WalkNet — a Decentralized Architecture for the Control of Walking Behaviour Based on Insect Studies

  • Holk Cruse
  • Bettina Bläsing
  • Jeffrey Dean
  • Volker Dürr
  • Thomas Kindermann
  • Josef Schmitz
  • Michael Schumm
Part of the International Centre for Mechanical Sciences book series (CISM, volume 467)


A network model for controlling a six-legged, insect-like walking system is described, which is based as far as possible on data obtained from biological experiments. The network contains internal recurrent connections, but important recurrent connections utilize the loop through the environment. This approach leads to a modular structure, WalkNet, consisting of several subnets. One subnet controls the three joints of a leg during its swing which is arguably the simplest possible solution. The task for the stance subnet appears more difficult because the movements of a larger and varying number of joints have to be controlled such that each leg contributes efficiently to support and propulsion and legs do not work at cross purposes, i.e. do not produce interaction forces. This task appears to require some kind of “motor intelligence”. We show that an extremely decentralized, simple controller, based on a combination of negative and positive feedback at the joint level, copes with all these problems by exploiting the physical properties of the system.


Stick Insect Recurrent Connection Swing Movement Chordotonal Organ Campaniform Sensilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayers, J. (2002). A conservative biomimetic control architecture for autonomous underwater robots. In: Neurotechnology for biomimetic robots (eds. Ayers, J., Davis, J. L. and Rudolph, A. ), pp. 241–259. Cambridge/MA, London: MIT Press.Google Scholar
  2. Bartling, C., and Schmitz, J. (2000). Reaction to disturbances of a walking leg during stance. J. Exp. Biol. 203, pp. 1211–1233.Google Scholar
  3. Bässler, U. (1977a). Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia-joint. J. comp. Physio1. 121, pp. 99–113.CrossRefGoogle Scholar
  4. Bässler, U. (1977b). Sensory control of leg movement in the stick insect Carausius morosus. Biol. Cybernetics 25, pp. 61–72.CrossRefGoogle Scholar
  5. Bässler, U. (1983). Neural basis of elementary behavior in stick insects. Springer, Berlin.CrossRefGoogle Scholar
  6. Bässler, U. (1993). The femur-tibia control system of stick insects–a model system for the study of the neural basis of joint control. Brain Research Reviews 18, pp. 207–226.CrossRefGoogle Scholar
  7. Bässler, U., and Büschges, A. (1998). Pattern generation for stick insect walking movements–multisensory control of a locomotor program. Brain Research Reviews 27, pp. 65–88.CrossRefGoogle Scholar
  8. Bässler, U., and Wegner, U. (1983). Motor output of the denervated thoracic ventral nerve cord in the stick insect Carausius morosus. J. exp. Biol. 105, pp. 127–145.Google Scholar
  9. Bizzi, E., Giszter, S.F., Loeb, E., Mussa-Ivaldi, F.A., and Saltiel, P. (1995). Modular organization of motor behavior in the frog’s spinal chord. Trends in Neurosciences 18, pp. 442–446.CrossRefGoogle Scholar
  10. Bläsing, B., Cruse, H. Stick insect locomotion I a complex environment: climbing over large gaps. J. exp. Biol. (submitted)Google Scholar
  11. Bläsing, B., Cruse, H. Mechanisms of stick insect locomotion in a gap crossing paradigm. J. Comp. Physiol. (in press)Google Scholar
  12. Braitenberg, V. (1984). Vehicles: experiments in synthetic psychology. Cambridge, MA: MIT Press.Google Scholar
  13. Bräunig, P. Hustert, R., and Pflüger, H.-J. (1981). Distribution and specific central projections in the thorax and proximal leg joints of locusts. I. Morphology, innervation and of internal proprioceptors of pro-and metathorax and their central projections. Cell Tissue Res. 216, pp. 57–77.CrossRefGoogle Scholar
  14. Brooks, R.A. (1986). A robust layered control system for a mobile robot. J. Robotics and Automation 2, pp. 14–23.CrossRefMathSciNetGoogle Scholar
  15. Brooks, R. A. (1989). A robot that walks: Emergent behaviors from a carefully evolved network. Neural Computat. 1, pp. 253–262.CrossRefGoogle Scholar
  16. Brooks, R.A. (1991). Intelligence without reason. IJCAI-91, Sydney, Australia, pp. 569–595.Google Scholar
  17. Brunn, D., and Dean, J. (1994). Intersegmental and local interneurones in the metathora:r: of the stick insect, Carausius morosus. J. Neurophysiology 72, pp. 1208–1219.Google Scholar
  18. Buschges, A., Schmitz, J., and Bässler, U. (1995). Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J. Exp. Biol. 198, pp. 435–456.Google Scholar
  19. Camhi, J. M. and Johnson, E. N. (1999). Highfrequency steering maneuvers mediated by tactile cues: Antennal wall-following in the cockroach. J. Exp. Biol. 202, pp. 631–643.Google Scholar
  20. Cowan, N. J., Ma, E. J., Cutkosky, M., and Full, R. J. (2003). A biologically inspired passive antenna for steering control of a running robot. Proc.11th Int.Symp. Robotics Res. ( ISRR 2003 ).Google Scholar
  21. Chasserat, C., and Clarac, F. (1980). Interlimb coordinating factors during driven walking in crustacea. J. comp. Physiol. 139, pp. 293–306.CrossRefGoogle Scholar
  22. Chiel, H. J., and Beer, R. D. (1997). The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Meurosciences 20, pp. 553–557.CrossRefGoogle Scholar
  23. Cruse, H. (1976a) Kuang The control of the body position in the stick insect (Carausius morosus), when walking over uneven surfaces. Biol. Cybernetics 24, pp. 25–33.CrossRefGoogle Scholar
  24. Cruse, H. (1976b). On the function of the legs in the free walking stick insect Carausius morosus. J. Comp. Physiol. 112, pp. 235–262CrossRefGoogle Scholar
  25. Cruse, H. (1985). Which parameters control the leg movement of a walking insect? I. Velocity control during the stance phase. J. exp. Biol. 116, pp. 343–355.Google Scholar
  26. Cruse, H. (1990). What mechanisms coordinate leg movement in walking arthropods? Trends in Neurosciences 13, pp. 15–21.CrossRefGoogle Scholar
  27. Cruse, H. (1996). Neural networks as cybernetic systems. Thieme StuttgartGoogle Scholar
  28. Cruse, H. (2002). The functional sense of “central oscillations” in walking. Biol. Cybernetics 86, pp. 271–280.CrossRefMATHGoogle Scholar
  29. Cruse, H. (2003). The evolution of cognition–a sensorimotor hypothesis. Cog. Science 27, pp. 135–155.Google Scholar
  30. Cruse, H., and Bartling, C. (1995). Movement of joint angles in the legs of a walking insect, Carausius morosus. J. Insect Physiol. 41, pp. 761–771.CrossRefGoogle Scholar
  31. Cruse, H., Bartling, C., Brunn, D.E., Dean, J., Dreifert, M., Kindermann, T., and Schmitz, J. (1995). Walking: a complex behavior controlled by simple systems. Adaptive Behavior 3, pp. 385–418.CrossRefGoogle Scholar
  32. Cruse, H., Bartling, C., Dean, J., Kindermann, T., Schmitz, J., Schumm, M., and Wagner, H. (1996). Coordination in a six-legged walking system: simple solutions to complex problems by exploitation of physical properties. In Maes, P., Mataric, M.J., Meyer, J-A., Pollack, J., and Wilson, S.W., eds., From animals to animats 4. pp. 84–93. Cambridge MA: MIT PressGoogle Scholar
  33. Cruse, H., Clarac, F., Chasserat, C. (1983). The control of walking movements in the leg of the rock lobster. Biol. Cybernetics 47, pp. 87–94.CrossRefGoogle Scholar
  34. Cruse, H., Kindermann, Th., Schumm, M., Dean, J., and Schmitz, J. (1998). Walknet–a biologically inspired network to control six-legged walking. Neural Networks. 11, pp. 1435–1447, R. Brooks, S. Grossberg (eds.)Google Scholar
  35. Cruse, H., and Müller, U. (1984). A new method measuring leg position of walking crustaceans shows that motor output during return stroke depends upon load. J. Exp. Biol. 110, pp. 319–322.Google Scholar
  36. Cruse, H., Riemenschneider, D., and Stammer, W. (1989). Control of body position of a stick insect standing on uneven surfaces. Biol. Cybernetics 61, pp. 71–77.CrossRefGoogle Scholar
  37. Cruse, H., and Saxler, G. (1980). Oscillations of force in the standing legs of a walking insect (Carausius morosus). Biol. Cybernetics 36, pp. 159–163.CrossRefGoogle Scholar
  38. Cruse, H., Schmitz, J., Braun, U., and Schweins, A. (1993). Control of body height in a stick insect walking on a treadwheel. J. exp. Biol. 181, pp. 141–155.Google Scholar
  39. Cruse, H. Steinkühler, U., and Burkamp, C. (1998). MMCa recurrent neural network which can be used as manipulable body model. In: From animals to animats 5. R. Pfeifer, B. Blumberg, J.-A. Meyer, S.W. Wilson (eds.) MIT Press pp. 381–389Google Scholar
  40. Cuénot, L. (1921). Regeneration de pattes ci la place d’antennes sectionnées chez un Phasme. Comptes Rendus Acad. Sci. Paris 172, pp. 949–952.Google Scholar
  41. Dean, J. (1990). Coding proprioceptive information to control movement to a target: simulation with a simple neural network. Biological Cybernetics 63, pp. 115–120.CrossRefGoogle Scholar
  42. Dean, J., and Cruse, H. (2003). Motor Pattern Generation. In Arbib, M., ed., Handbook for Brain Theory and Neural Network. Cambridge MA: Bradford Book, MIT Press, pp. 696–701.Google Scholar
  43. Degtyarenko, A.M., Simon, E.S., Norden-Kirchmar, T., and Burke, R.E. (1998). Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during ficitive locomotion and scratching in the cat. J. Neurophysiol. 79, pp. 447–463.Google Scholar
  44. Delcomyn, F. (1987). Motor activity during searching and walking movements of cockroach legs. J. Exp. Biol. 133, pp. 111–120Google Scholar
  45. Diederich, B., Schumm, M., and Cruse, H. (2002). Stick insects walking along inclined surfaces. Integrative and Comparative Biology, 42, pp. 165–173.CrossRefGoogle Scholar
  46. Dürr, V. (2001). Stereotypic leg searching-movements in the stick insect: Kinematic analysis, behavioural context and simulation. J. Exp. Biol. 204, pp. 1589–1604.Google Scholar
  47. Dürr, V., König, Y., and Kittmann, R. (2001). The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking. J. Comp. Physiol.A 187, pp. 131–144.CrossRefGoogle Scholar
  48. Dürr, V. and Krause, A. (2001). The stick insect antenna as a biological paragon for an actively moved tactile probe for obstacle detection. In: Climbing and Walking Robots–From Biology to Industrial Applications. Proc. 4th Int.Conf. Climbing and Walking Robots (CLAWAR 2001, Karlsruhe) (eds. Berns, K. and Dillmann, R.), pp. 87–96. Bury St. Edmunds, London: Professional Engineering Publishing.Google Scholar
  49. Dürr, V. and Krause, A. (2002). Design of a biomimetic active tactile sensor for legged locomotion. In: Climbing and Walking Robots, and the Support Techologies for Mobile Machines. Proc. 5th Int.Conf. Climbing and Walking Robots, (CLAWAR 2002, Paris) (eds. Bidaud, P. and Ben Amar, F.), pp. 255–262. Bury St. Edmunds, London: Professional Engineering Publishing.Google Scholar
  50. Dürr, V., Krause, A., Schmitz, J., and Cruse, H. (2003). Neuroethological concepts and their transfer to walking machines. Int. J. Robotics Res. 22, pp. 151–167.Google Scholar
  51. Duysens, J., Clarac, F., and Cruse, H. (2000). Load regulating mechanisms in gait and posture: comparative aspects. Phys. Rev. 80, pp. 83–133.Google Scholar
  52. Frazier, S.F., Larsen, G.S.; Neff, D., Quimby, L., Carney, M., DiCaprio, R.A., and Zill, S.N. (1999). Elasticity and movements of the cockroach tarsus in walking. J. Comp. Physiol. A 185, pp. 157–172.Google Scholar
  53. Full, R.J., and Blickhan, R. (1993). Similarity in multilegged locomotion: Bouncing like a monopole. J. Comp. Physiol. A 173, pp. 509–517.Google Scholar
  54. Full, R.J., Blickhan, R., and Ting, L.H. (1991). Leg design in hexapedal runners. J. Exp. Biol. 158, pp. 369–390Google Scholar
  55. Galvez, J.A., Estremera, J., and de Santos, P. G. (2003). A new legged-robot configuration for research in force distribution. Mechatronics 13, pp. 907–932.CrossRefGoogle Scholar
  56. Graham, D. (1985). Pattern and control of walking in insects. Advances in Insect Physiology 18, pp. 31–140.CrossRefGoogle Scholar
  57. Gorb, S.N., Jiao, Y., Scherge, M. (2000). Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera Tettigoniidae). J. Comp. Physiol. A 186, pp. 821–831.CrossRefGoogle Scholar
  58. Holst, E. v. (1943). Ober relative Koordination bei Arthropoden. Pflügers Archiv 246, pp. 847–865.CrossRefGoogle Scholar
  59. Houk, J.C., Keifer, J., and Barto, A.G. (1993). Distributed motor commands in the limb premotor network. Trends in Neurosciences 16, pp. 27–33.CrossRefGoogle Scholar
  60. Hustert, H., Pflüger, H.-J., and Bräunig, P. (1981). Distribution and specific central projections in the thorax and proximal leg joints of locusts. III. The external mechanoreceptors: The campaniform sensilla. Cell Tissue Res. 216, pp. 97–111, 1981.CrossRefGoogle Scholar
  61. Hustert, R. (1983). Proprioceptor responses and convergence of proprioceptive influence on motorneurones in the mesothoracic thoraco-coxal joint of locusts. J. comp. Physiol. 150, pp. 77–86.CrossRefGoogle Scholar
  62. Jindrich, D.L., and Full, R.J. (1999). Many-legged maneuverability: dynamics of turning in hexapods. J. Exp. Biol. 202, pp. 1603–1623.Google Scholar
  63. Jindrich, D.L., and Full, R.J. (2002). Dynamic stabilization of rapid hexapedal locomotion. J. Exp. Biol. 205, pp. 2803–2823.Google Scholar
  64. Kaneko, M., Kanayma, N., and Tsuji, T. (1998). Active antenna for contact sensing. IIEEE Trans. Robot. Autom. 14, 278–291.CrossRefGoogle Scholar
  65. Kawato, M., and Gomi, H. (1992). The cerebellum and VOR/OKR learning model. Trends in Neurosciences 15, pp. 445–453.CrossRefGoogle Scholar
  66. Kindermann T. (2002). Behavior and adaptability of a six-legged walking system with. highly distributed control. Adaptive Behavior 9, pp. 16–41.CrossRefGoogle Scholar
  67. Kindermann T. (2003). Dissertation. University of Bielefeld, 2003.Google Scholar
  68. Kristan, W.B., Jr., Lockery, S.R., Wittenberg, G., and Brody, D. (1992). Making behavioral choices with interneurones in a distributed system. In Kien, J., McCrohan, C.R., Winlow, W., eds., Neurobiology of Motor Programme Selection. Pergamon Press. pp. 170–200.Google Scholar
  69. Maes, P. (1991). A bottom-up mechanisms for behavior selection in an artificial creature. In Meyer, J-A., Wilson, S.W. eds., From animals to animats. Cambridge MA: MIT Press. pp. 238–246.Google Scholar
  70. Müller-Wilm, U., Dean, J., Cruse, H., Weidemann, H.J., Eltze, J., and Pfeiffer, F. (1992). Kinematic model of stick insect as an example of a 6-legged walking system. Adaptive Behavior 1, pp. 155–169.CrossRefGoogle Scholar
  71. Pearson, K.G. (1972). Central programming and reflex control of walking in the cockroach. J. Exp. Biol. 56, pp. 173–193.Google Scholar
  72. Pearson, K.G. (1993). Common principles of motor control in vertebrates and invertebrates. Annual Review of Neuroscience 16, pp. 265–297.CrossRefGoogle Scholar
  73. Pelletier, Y. and McLeod, C. D. (1994). Obstacle perception by insect antennae during terrestrial locomotion. Physiol. Entomol. 19, pp. 360–362.CrossRefGoogle Scholar
  74. Pringle, J.W.S. (1938). Proprioception in insects. II. The action of the campaniform sensilla on the legs. J. Exp. Bio1. 15, pp. 114–131.Google Scholar
  75. Prochazka, A., Gillard, D., Bennett, D.J. (1997a). Implications of positive feedback in the control of movement. The American Physiological Society 1997, pp. 3237–3251. Prochazka, A., Gillard,D., Bennett,D.J. (1997b). Positive force geedback control of muscles. The American Physiological Society 1997, pp. 3226–3236.Google Scholar
  76. Radnikow, G., and Bässler, U. (1991). Function of a muscle whose apodeme travels through a joint moved by other muscles: why the retractor unguis muscle in stick insects is tripartite and has no antagonist. J. Exp. Biol. 157, pp. 87–99.Google Scholar
  77. Schmitz, J. (1993). Load-compensating reactions in the proximal leg joints of stick insects during standing and walking. J. Exp. Biol. 183, pp. 15–33.Google Scholar
  78. Schmitz J, and Hassfeld, G. (1989). The treading-on-tarsus reflex in stick insects: phase-dependence and modifications of the motor output during walking. J. Exp. Biol. 143. pp. 373–388.Google Scholar
  79. Schmitz, J., Bartling, Ch., Brunn, D. E., Cruse, H., Dean, J., Kindermann, Th., Schumm, M., Wagner, H. (1995). Adaptive properties of “hard-wired” neuronal systems. Verh. Dtsch. Zool. Ges. 88.2, pp. 165–179Google Scholar
  80. Staudacher, E., Gebhardt, M., and Dürr, V. (2004). Antennal Movements and Mechanoreception: Neurobiology of Active Tactile Sensors. Adv. Insect. Physiol., submitted.Google Scholar
  81. Steels, L. (1994). The Artificial Life Roots of Artificial Intelligence. Artificial Life 1. pp. 75–110.CrossRefGoogle Scholar
  82. Tsujimura, T. and Yabuta, T. (1992). A tactile sensing method employing force/torque information through insensitive probes. Proc. IEEE Int. Conf. Robotics and Automation, pp. 1315–1320Google Scholar
  83. Ting, L.H., Blickhan, R., and Full, R.J. (1994). Dynamic and static stability in hexapedal runners. J. Exp. Biol. 197, pp. 251–269.Google Scholar
  84. Tryba, A.K., and Ritzmann, R. (2000). Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. I. Kinematics and electromygrams. J. Neurophysiol. 83, pp. 3323–3336. A tactile sensing method employing force/torque information through insensitive probes. Proc. IEEE Int. Conf. Robotics Automation 1992, pp. 1315–1320.Google Scholar
  85. Ueno, N., Svinin, M. M., and Kaneko, M. (1998). Dynamic contact sensing by flexible beam. IEEE-ASME Trans.Mechatronics 3, pp. 254–264.CrossRefGoogle Scholar
  86. Watson, J. T., Ritzmann, R. E., Zill, S. N., and Pollack, A. J. (2002). Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics. J. Comp. Physiol. A 188, pp. 39–53.Google Scholar
  87. Wendler, G. (1964). Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen. Z. vergl. Physiol. 48, pp. 198–250.CrossRefGoogle Scholar
  88. Zeil, J., Sandeman, R., and Sandeman, D. C. (1985). Tactile localisation: the function of active antennal movements in the crayfish Cherax destructor. J. Comp. Physiol. A 157, pp. 607–617.CrossRefGoogle Scholar
  89. Zill, S.N., and Moran, D.T. (1981). The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the american cockroach, Periplaneta americana. J. Exp. Biol. 94, pp. 57–75Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Holk Cruse
    • 1
  • Bettina Bläsing
    • 1
  • Jeffrey Dean
    • 2
  • Volker Dürr
    • 1
  • Thomas Kindermann
    • 1
  • Josef Schmitz
    • 1
  • Michael Schumm
    • 1
  1. 1.Fac. of BiologyUniversity of BielefeldBielefeldGermany
  2. 2.Dept. of BiologyCleveland State UniversityClevelandUSA

Personalised recommendations