Evolution of Vertebrate Locomotory Systems

  • Martin S. Fischer
  • Hartmut F. Witte
Part of the International Centre for Mechanical Sciences book series (CISM, volume 467)


Admiring nature for its seeming perfection, at least when one of its products are humans themselves, many concepts are based on „learning from nature“. Biomimicry, where the mechanical properties and control architectures in animals are more or less copied, or bionics, where biological structures are rebuilt in technical devices are only two examples of such concepts. But, there is a striking difference between biological and technical structures defined as solutions to external demands. Whereas technical structures can be and are created de novo, biological structures are always the result of a permanent and ongoing historical process. They are carrying their evolutionary burden, and by mere logic their ability to adapt to actual demands can only be perfect, if the past and recent functional requirements are identical. Seilacher (1970) drew a triangle in which he named the three vertices: „historisch-phylogenetischer Aspekt“, „ökologisch-adaptiver Aspekt“ and „bautechnischer Aspekt“ (Figure 1). Gould (2002) called „these idealized end-members“ „historical“, „functional“, and „structural“ (p. 1052), and the whole thing an „aptive triangle“. „Structural“ includes two aspects: first, the „immediate and deterministic consequences of the physical properties of matter and the dynamical nature of forces“ (ibid. p. 1054), a view which is familiar to all morphologists since D’Arcy Thompson (1917). The second aspect are the „spandrels of San Marco“ (Gould and Lewontin, 1979), which have been introduced into biology to point to features arising by nonadaptive processes, or as simple consequences of design and growth criteria (technical architecture).


Motor Unit Hind Limb Central Pattern Generator Shoulder Girdle Pelvic Girdle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R.M. (1988). Why mammals gallop. Am. Zool. 28, pp. 237–245.Google Scholar
  2. Alexander, R. M. and Bennet-Clark, H. C. (1977). Storage of elastic strain energy in muscle and other tissues. Nature 265, pp. 114–117.CrossRefGoogle Scholar
  3. Alexander, R. M. (1988). Elastic mechanisms in animal movement. Cambridge University Press.Google Scholar
  4. Baxendale, S., Davidson, C., Muxworthy, C., Wolff, C., Ingham. PW., Roy, S (in press). A novel role for the B-cell maturation factor Blimp in the specification of vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nature Genetics.Google Scholar
  5. Bem, T., Cabelguen, J.M., Ekeberg, O. and Grillner, S. (2003). From swimming to walking: a single basic network for two different behaviors. Biol. Cybern., 88, pp. 79–90CrossRefMATHGoogle Scholar
  6. Brunet, M. et al. (2002). A new hominid from the Upper Miocene of Chad. Central Africa. Nature 418, pp. 145–151.Google Scholar
  7. Caicoya, A.G., Illert, M. and Jänike, R. (1999). Monosynaptic Ia pathways at the cat shoulder. J. Physiol. 518, pp. 825–841.CrossRefGoogle Scholar
  8. Cavagna, G. A., Heglund, N. C. and Taylor, R. (1977). Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J.Physiol. 233, pp. 243–261.Google Scholar
  9. Dawson, T. J. and Taylor, C. R. (1973). Energetic cost of locomotion in kangaroos. Nature 246, pp. 313–314.CrossRefGoogle Scholar
  10. Duboule, D. (2002). Developmental biology: Making progress with limb models. Nature 418, pp. 492–493.CrossRefGoogle Scholar
  11. Ekeberg, O. and Grillner, S. (1999). Simulations of neuromuscular control in lamprey swimming. Phil. Trans. R. Soc. Lond. B, 354, pp. 895–902.CrossRefGoogle Scholar
  12. English, A. W. (1978a). An electromyographic analysis of forelimb muscles during over-ground stepping in the cat. J.Exp. Biol. 76, pp. 105–122.Google Scholar
  13. English, A.W. (1978b). Functional analysis of the shoulder girdle of cats during locomotion. J. Morph. 156, pp. 279–292.CrossRefGoogle Scholar
  14. English A.W., Letbetter W.D. (1982). Anatomy and innervation patterns of the cat lateral gastrocnemius and plantaris muscles. Am. J.Anat. 164, pp. 67–77.CrossRefGoogle Scholar
  15. Fischer, M. S. (1994). Crouched posture and high pivot, a principle in the locomotion of small mammals: The example of the rock hyrax (Procavia capensis) (Mammalia: Hyracoidea). J.Hum. Evol. 26, pp. 501–524.CrossRefGoogle Scholar
  16. Fischer, M. S. (1998). Die Lokomotion von Procavia capensis (Mammalia: Hyracoidea). Ein Beitrag zur Evolution des Bewegungssystems der Säugetiere. Abh. Naturwiss. Verh. naturwiss. Vereins Hamburg (NF), 33, pp. 1–188.Google Scholar
  17. Fischer, M.S. (1999). Kinematics, EMG, and inverse dynamics of the therian forelimb–a synthetical approach. Zool. Anz. 238, pp. 41–54.Google Scholar
  18. Fischer, M.S., Schilling, N., Schmidt, M., Haarhaus, D. and Witte, H. (2002). Basic limb kinematics of small therian mammals. J. Exp. Biol. 205, pp. 1315–1338.Google Scholar
  19. Flood, P.R. and Mathisen, S.J. (1962). A third type of muscle fibre in the parietal muscle of the atlantic hagfish, Myxine glutinosa. Z. Zellforsch. 58, pp. 638–640.CrossRefGoogle Scholar
  20. Fürst, D. O., Osborn, M., Nave, R. and Weber, K. (1988). The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in irnrnunelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z-line extends close to the M-line. J.Cell. Biol. 106. 2, pp. 1563–1572.CrossRefGoogle Scholar
  21. Gorb, S.N. and Fischer, M.S. (2000). Three-dimensional analysis of the arrangement and length distribution of fascicles in the triceps muscle of Galea musteloides (Rodentia, Cavimorpha). Zoomorphology 120. pp. 91–97.CrossRefGoogle Scholar
  22. Gordon, A. M., Huxley, A. F. and Juliab, F. J. (1966). The variation in isometric tension with sarcornere length in vertebrate muscle fibres. J.Physiol. Lond. 184, pp. 170–192.Google Scholar
  23. Goslow, G. E., Seeherman, H. J., Taylor, C. R., McCutchin, M. N., Heglund, N. C. (1981). Electrical activity and relative length changes of dog limb muscles as a function of speed and gait. J.Exp. Biol. 94, pp. 15–42.Google Scholar
  24. Gould, S.J. (2002). Structure of evolutionary theory. The Belknap Press of Harward Univ. Press, Cambridge (Mass.).Google Scholar
  25. Gould, S.J. and Lewontin, R.C. (1979). Spandrels of San Marco and the Panglossian Paradigm. Proc. R. Soc. London, series B, 205, pp. 581–598.CrossRefGoogle Scholar
  26. Granzier, H. and Labeit, S. (2002). Cardiac tit in: an adjustable multi-functional spring. J. Physiol. 541(2), pp.335–342CrossRefGoogle Scholar
  27. Granzier, H.L. and Wang, K.(1993). Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys.J. 65(5), pp.2141–2159.CrossRefGoogle Scholar
  28. Hackert, R. and Fischer, M.S. (submitted). Aspects of sagittal bending of the spine in small mammals. J.Exp. Biol.Google Scholar
  29. Hildebrand, M. (1985). Walking and Running. In: M. Hildebrand (ed.) Functional Vertebrate Morphology. The Belknap Press, Cambridge (Mass.), pp. 38–57.Google Scholar
  30. Ijspeert A.J. (2001). A connectionist central pattern generator for the aquatic and ter- restrial gaits of a simulated salamander. Biological Cybernetics 84, pp. 331–348.CrossRefGoogle Scholar
  31. van Ingen Schenau, G.J., Dorssers, W.M.M., Welter, T.G., Beelen, A., de Groot, G. and Jacobs, R. (1995). The control of mono-articular muscles in multijoint leg extensions in man. J. Physiol. 484, pp. 247–254.Google Scholar
  32. Inman, V. T., Ralston, H. J. and Todd, F. (1981). Human walking. Williams and Wilkins, Baltimore, London.Google Scholar
  33. Jacobs, R., Bobbert, M.F. and Van Ingen Schenau, G.J. (1993). Function of mono-and biarticular muscles in running. Med. Sci. Sports Exercise 25, pp. 1163–1173.Google Scholar
  34. Jenkins, F.A., Jr. and Goslow, G.E., Jr. (1983). The functional anatomy of the shoulder of the savannah monitor lizard (Varanus exanthematicus). J.Morph. 175, pp. 195–216.CrossRefGoogle Scholar
  35. Labeit, S. and Kolmerer, B. (1995). Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, pp. 293–296.CrossRefGoogle Scholar
  36. Lindsey, C.C. (1978). Fish Physiology, vol. 7. Academic Press, New York.Google Scholar
  37. Linke, W.A., Popov, V.I. and Pollack, G.H. (1994). Passive and active tension in single cardiac myofibrils. Biophys.J. 67, pp. 782–792.CrossRefGoogle Scholar
  38. Marinelli, W. and Strenger, A. ( 1954, 1956). Lampetra fluviatilis, Myxine glutinosa. In: Vergleichende Anatomie und Morphologie der Wirbeltiere. 1. und 2. Lieferung. Deuticke, Wien.Google Scholar
  39. Mochon, S. and McMahon, T. A. (1980a). Ballistic walking. J. Biomech. 13, pp. 49–57.CrossRefGoogle Scholar
  40. Mochon, S. and McMahon, T. A. (1980b). Ballistic walking: an improved model. Math. Biosc. 52, pp. 241–260.CrossRefMATHMathSciNetGoogle Scholar
  41. Ritzmann, R.E., Quinn, R.D. and Fischer, M.S. (in press). Locomotion through complex terrain by insects and robots. Arthropod Struct. Develop.Google Scholar
  42. Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K. and Coppens, Y. (2001). First hominid from the Miocene (Lukeino Formation, Kenya). C.R.Acad.Sci. ser. IIa. 332, pp. 137–144.CrossRefGoogle Scholar
  43. Schilling, N., Stark, H. and Fischer, M.S. (2003). Analyse der paravertebralen Muskulatur kleiner Säugetiere. In: Grieshaber, R. and Schneider, W. (Hrsg.) Prävention von arbeitsbedingten Gesundheitsgefahren und Erkrankungen. Monade agentur für kommunikation, Leipzig, pp. 343–354.Google Scholar
  44. Scholle, H.Ch., Schumann, N.P., Biedermann, F., Roeleveld, K., Stegeman, D.F., Graßme, R., Schilling, N., Fischer, M.S. (2001). Spatio-temporal surface EMG characteristics from rat triceps brachii muscle during treadmill locomotion indicate selective recruitment of functionally distinct muscle regions. Exp. Brain Res. 138, pp. 26–36.CrossRefGoogle Scholar
  45. Seilacher, A. (1970). Arbeitskonzept zur Konstruktionsrnorphologie. Lethaia 3, pp. 393–396.CrossRefGoogle Scholar
  46. Seyfarth, A., Geyer, H. and Blickhan, R. (2003). Swing-leg retraction: A simple control model for stable running. J. Exp. Biol. 206, pp. 2547–2555.CrossRefGoogle Scholar
  47. Starck, D. (1979). Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage. Bd. 2. Springer, Berlin.Google Scholar
  48. Wang, K., McCarter, R., Wright, J., Beverly, J. and Ramirez Mitchell, R. (1991). Regulation of skeletal muscle stiffness and elasticity by titin isoforms. Proc. Natl. Acad. Sci. USA 88, pp. 7101–7109.CrossRefGoogle Scholar
  49. Wang, K., McCarter, R., Wright, J., Beverly, J., Ramirez Mitchell, R. (1993). Viscoelasticity of the sarcornere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys. J. 64 (4), pp. 1161–1177.CrossRefGoogle Scholar
  50. Watanabe, K. and Suzuki, A. (1999). Distribution, density, and structure of muscle spindles in the vastus medialis and the peroneus longus muscle of sheep. Okajimas Folia Anat. Jpn. 76, pp. 203–220.Google Scholar
  51. Weber, E. and Weber, W. (1836). Die Mechanik der menschlichen Gehwerkzeuge. Dieterich, Göttingen.Google Scholar
  52. Witte, H. (2002). Hints for the construction of anthropomorphic robots based on the functional morphology of human walking. Journal of the Robotic Society of Japan 20(3), pp.247–254.CrossRefGoogle Scholar
  53. Witte, H., Preuschoft, H. and Recknagel, S. (1991). Human body proportions explained on the basis of biomechanical principles. Z. Morph. Anthrop. 78, pp. 407–423.Google Scholar
  54. Witte, H., Biltzinger, J., Hackert, R., Schilling, N., Schmidt, M., Reich, C., Fischer, M.S. (2002). Torque patterns of the limbs of small therian mammals during locomotion on flat ground. J.Exp. Biol. 205, pp. 1339–1353.Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Martin S. Fischer
    • 1
  • Hartmut F. Witte
    • 2
  1. 1.Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem MuseumFriedrich-Schiller-Universität Jena ErbertstrJenaGermany
  2. 2.Fachgebiet Biomechatronik, Institut für Mikrosystemtechnik, Mechatronik und MechanikFakultät für Maschinenbau Technische Universität IlmenauIlmenauGermany

Personalised recommendations