Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 467))

Abstract

Admiring nature for its seeming perfection, at least when one of its products are humans themselves, many concepts are based on „learning from nature“. Biomimicry, where the mechanical properties and control architectures in animals are more or less copied, or bionics, where biological structures are rebuilt in technical devices are only two examples of such concepts. But, there is a striking difference between biological and technical structures defined as solutions to external demands. Whereas technical structures can be and are created de novo, biological structures are always the result of a permanent and ongoing historical process. They are carrying their evolutionary burden, and by mere logic their ability to adapt to actual demands can only be perfect, if the past and recent functional requirements are identical. Seilacher (1970) drew a triangle in which he named the three vertices: „historisch-phylogenetischer Aspekt“, „ökologisch-adaptiver Aspekt“ and „bautechnischer Aspekt“ (Figure 1). Gould (2002) called „these idealized end-members“ „historical“, „functional“, and „structural“ (p. 1052), and the whole thing an „aptive triangle“. „Structural“ includes two aspects: first, the „immediate and deterministic consequences of the physical properties of matter and the dynamical nature of forces“ (ibid. p. 1054), a view which is familiar to all morphologists since D’Arcy Thompson (1917). The second aspect are the „spandrels of San Marco“ (Gould and Lewontin, 1979), which have been introduced into biology to point to features arising by nonadaptive processes, or as simple consequences of design and growth criteria (technical architecture).

First, Martin Fischer wants to thank very much Teresa Zielinska and Friedrich Pfeiffer for inviting him to Udine to a phantastic meeting. Roy Ritzmann, with whom an exciting cooperation started there, helped with his critical comments and language polishing to improve the manuscript. We are grateful to all members of the Jena „Locomotion group“ who helped with their enthusiasm. ideas, and practical help. We thank Gertrud Klauer for focussing our view on the importance of sensory structures. The work was granted by the Deutsche Forschungsgemeinschaft (DFG) (Innovationskolleg „Bewegungssysteme“ Teilprojekte A1 and B1, and Schwerpunktprogramm „Autonomes Laufen“) and Berufsgenossenschaft Gaststätten und Nahrungsmittel (BGN) through the Kompetenzzentrum für Interdisziplinäre Prävention (KIP) at Jena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Alexander, R.M. (1988). Why mammals gallop. Am. Zool. 28, pp. 237–245.

    Google Scholar 

  • Alexander, R. M. and Bennet-Clark, H. C. (1977). Storage of elastic strain energy in muscle and other tissues. Nature 265, pp. 114–117.

    Article  Google Scholar 

  • Alexander, R. M. (1988). Elastic mechanisms in animal movement. Cambridge University Press.

    Google Scholar 

  • Baxendale, S., Davidson, C., Muxworthy, C., Wolff, C., Ingham. PW., Roy, S (in press). A novel role for the B-cell maturation factor Blimp in the specification of vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nature Genetics.

    Google Scholar 

  • Bem, T., Cabelguen, J.M., Ekeberg, O. and Grillner, S. (2003). From swimming to walking: a single basic network for two different behaviors. Biol. Cybern., 88, pp. 79–90

    Article  MATH  Google Scholar 

  • Brunet, M. et al. (2002). A new hominid from the Upper Miocene of Chad. Central Africa. Nature 418, pp. 145–151.

    Google Scholar 

  • Caicoya, A.G., Illert, M. and Jänike, R. (1999). Monosynaptic Ia pathways at the cat shoulder. J. Physiol. 518, pp. 825–841.

    Article  Google Scholar 

  • Cavagna, G. A., Heglund, N. C. and Taylor, R. (1977). Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J.Physiol. 233, pp. 243–261.

    Google Scholar 

  • Dawson, T. J. and Taylor, C. R. (1973). Energetic cost of locomotion in kangaroos. Nature 246, pp. 313–314.

    Article  Google Scholar 

  • Duboule, D. (2002). Developmental biology: Making progress with limb models. Nature 418, pp. 492–493.

    Article  Google Scholar 

  • Ekeberg, O. and Grillner, S. (1999). Simulations of neuromuscular control in lamprey swimming. Phil. Trans. R. Soc. Lond. B, 354, pp. 895–902.

    Article  Google Scholar 

  • English, A. W. (1978a). An electromyographic analysis of forelimb muscles during over-ground stepping in the cat. J.Exp. Biol. 76, pp. 105–122.

    Google Scholar 

  • English, A.W. (1978b). Functional analysis of the shoulder girdle of cats during locomotion. J. Morph. 156, pp. 279–292.

    Article  Google Scholar 

  • English A.W., Letbetter W.D. (1982). Anatomy and innervation patterns of the cat lateral gastrocnemius and plantaris muscles. Am. J.Anat. 164, pp. 67–77.

    Article  Google Scholar 

  • Fischer, M. S. (1994). Crouched posture and high pivot, a principle in the locomotion of small mammals: The example of the rock hyrax (Procavia capensis) (Mammalia: Hyracoidea). J.Hum. Evol. 26, pp. 501–524.

    Article  Google Scholar 

  • Fischer, M. S. (1998). Die Lokomotion von Procavia capensis (Mammalia: Hyracoidea). Ein Beitrag zur Evolution des Bewegungssystems der Säugetiere. Abh. Naturwiss. Verh. naturwiss. Vereins Hamburg (NF), 33, pp. 1–188.

    Google Scholar 

  • Fischer, M.S. (1999). Kinematics, EMG, and inverse dynamics of the therian forelimb–a synthetical approach. Zool. Anz. 238, pp. 41–54.

    Google Scholar 

  • Fischer, M.S., Schilling, N., Schmidt, M., Haarhaus, D. and Witte, H. (2002). Basic limb kinematics of small therian mammals. J. Exp. Biol. 205, pp. 1315–1338.

    Google Scholar 

  • Flood, P.R. and Mathisen, S.J. (1962). A third type of muscle fibre in the parietal muscle of the atlantic hagfish, Myxine glutinosa. Z. Zellforsch. 58, pp. 638–640.

    Article  Google Scholar 

  • Fürst, D. O., Osborn, M., Nave, R. and Weber, K. (1988). The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in irnrnunelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z-line extends close to the M-line. J.Cell. Biol. 106. 2, pp. 1563–1572.

    Article  Google Scholar 

  • Gorb, S.N. and Fischer, M.S. (2000). Three-dimensional analysis of the arrangement and length distribution of fascicles in the triceps muscle of Galea musteloides (Rodentia, Cavimorpha). Zoomorphology 120. pp. 91–97.

    Article  Google Scholar 

  • Gordon, A. M., Huxley, A. F. and Juliab, F. J. (1966). The variation in isometric tension with sarcornere length in vertebrate muscle fibres. J.Physiol. Lond. 184, pp. 170–192.

    Google Scholar 

  • Goslow, G. E., Seeherman, H. J., Taylor, C. R., McCutchin, M. N., Heglund, N. C. (1981). Electrical activity and relative length changes of dog limb muscles as a function of speed and gait. J.Exp. Biol. 94, pp. 15–42.

    Google Scholar 

  • Gould, S.J. (2002). Structure of evolutionary theory. The Belknap Press of Harward Univ. Press, Cambridge (Mass.).

    Google Scholar 

  • Gould, S.J. and Lewontin, R.C. (1979). Spandrels of San Marco and the Panglossian Paradigm. Proc. R. Soc. London, series B, 205, pp. 581–598.

    Article  Google Scholar 

  • Granzier, H. and Labeit, S. (2002). Cardiac tit in: an adjustable multi-functional spring. J. Physiol. 541(2), pp.335–342

    Article  Google Scholar 

  • Granzier, H.L. and Wang, K.(1993). Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys.J. 65(5), pp.2141–2159.

    Article  Google Scholar 

  • Hackert, R. and Fischer, M.S. (submitted). Aspects of sagittal bending of the spine in small mammals. J.Exp. Biol.

    Google Scholar 

  • Hildebrand, M. (1985). Walking and Running. In: M. Hildebrand (ed.) Functional Vertebrate Morphology. The Belknap Press, Cambridge (Mass.), pp. 38–57.

    Google Scholar 

  • Ijspeert A.J. (2001). A connectionist central pattern generator for the aquatic and ter- restrial gaits of a simulated salamander. Biological Cybernetics 84, pp. 331–348.

    Article  Google Scholar 

  • van Ingen Schenau, G.J., Dorssers, W.M.M., Welter, T.G., Beelen, A., de Groot, G. and Jacobs, R. (1995). The control of mono-articular muscles in multijoint leg extensions in man. J. Physiol. 484, pp. 247–254.

    Google Scholar 

  • Inman, V. T., Ralston, H. J. and Todd, F. (1981). Human walking. Williams and Wilkins, Baltimore, London.

    Google Scholar 

  • Jacobs, R., Bobbert, M.F. and Van Ingen Schenau, G.J. (1993). Function of mono-and biarticular muscles in running. Med. Sci. Sports Exercise 25, pp. 1163–1173.

    Google Scholar 

  • Jenkins, F.A., Jr. and Goslow, G.E., Jr. (1983). The functional anatomy of the shoulder of the savannah monitor lizard (Varanus exanthematicus). J.Morph. 175, pp. 195–216.

    Article  Google Scholar 

  • Labeit, S. and Kolmerer, B. (1995). Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270, pp. 293–296.

    Article  Google Scholar 

  • Lindsey, C.C. (1978). Fish Physiology, vol. 7. Academic Press, New York.

    Google Scholar 

  • Linke, W.A., Popov, V.I. and Pollack, G.H. (1994). Passive and active tension in single cardiac myofibrils. Biophys.J. 67, pp. 782–792.

    Article  Google Scholar 

  • Marinelli, W. and Strenger, A. ( 1954, 1956). Lampetra fluviatilis, Myxine glutinosa. In: Vergleichende Anatomie und Morphologie der Wirbeltiere. 1. und 2. Lieferung. Deuticke, Wien.

    Google Scholar 

  • Mochon, S. and McMahon, T. A. (1980a). Ballistic walking. J. Biomech. 13, pp. 49–57.

    Article  Google Scholar 

  • Mochon, S. and McMahon, T. A. (1980b). Ballistic walking: an improved model. Math. Biosc. 52, pp. 241–260.

    Article  MATH  MathSciNet  Google Scholar 

  • Ritzmann, R.E., Quinn, R.D. and Fischer, M.S. (in press). Locomotion through complex terrain by insects and robots. Arthropod Struct. Develop.

    Google Scholar 

  • Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K. and Coppens, Y. (2001). First hominid from the Miocene (Lukeino Formation, Kenya). C.R.Acad.Sci. ser. IIa. 332, pp. 137–144.

    Article  Google Scholar 

  • Schilling, N., Stark, H. and Fischer, M.S. (2003). Analyse der paravertebralen Muskulatur kleiner Säugetiere. In: Grieshaber, R. and Schneider, W. (Hrsg.) Prävention von arbeitsbedingten Gesundheitsgefahren und Erkrankungen. Monade agentur für kommunikation, Leipzig, pp. 343–354.

    Google Scholar 

  • Scholle, H.Ch., Schumann, N.P., Biedermann, F., Roeleveld, K., Stegeman, D.F., Graßme, R., Schilling, N., Fischer, M.S. (2001). Spatio-temporal surface EMG characteristics from rat triceps brachii muscle during treadmill locomotion indicate selective recruitment of functionally distinct muscle regions. Exp. Brain Res. 138, pp. 26–36.

    Article  Google Scholar 

  • Seilacher, A. (1970). Arbeitskonzept zur Konstruktionsrnorphologie. Lethaia 3, pp. 393–396.

    Article  Google Scholar 

  • Seyfarth, A., Geyer, H. and Blickhan, R. (2003). Swing-leg retraction: A simple control model for stable running. J. Exp. Biol. 206, pp. 2547–2555.

    Article  Google Scholar 

  • Starck, D. (1979). Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage. Bd. 2. Springer, Berlin.

    Google Scholar 

  • Wang, K., McCarter, R., Wright, J., Beverly, J. and Ramirez Mitchell, R. (1991). Regulation of skeletal muscle stiffness and elasticity by titin isoforms. Proc. Natl. Acad. Sci. USA 88, pp. 7101–7109.

    Article  Google Scholar 

  • Wang, K., McCarter, R., Wright, J., Beverly, J., Ramirez Mitchell, R. (1993). Viscoelasticity of the sarcornere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys. J. 64 (4), pp. 1161–1177.

    Article  Google Scholar 

  • Watanabe, K. and Suzuki, A. (1999). Distribution, density, and structure of muscle spindles in the vastus medialis and the peroneus longus muscle of sheep. Okajimas Folia Anat. Jpn. 76, pp. 203–220.

    Google Scholar 

  • Weber, E. and Weber, W. (1836). Die Mechanik der menschlichen Gehwerkzeuge. Dieterich, Göttingen.

    Google Scholar 

  • Witte, H. (2002). Hints for the construction of anthropomorphic robots based on the functional morphology of human walking. Journal of the Robotic Society of Japan 20(3), pp.247–254.

    Article  Google Scholar 

  • Witte, H., Preuschoft, H. and Recknagel, S. (1991). Human body proportions explained on the basis of biomechanical principles. Z. Morph. Anthrop. 78, pp. 407–423.

    Google Scholar 

  • Witte, H., Biltzinger, J., Hackert, R., Schilling, N., Schmidt, M., Reich, C., Fischer, M.S. (2002). Torque patterns of the limbs of small therian mammals during locomotion on flat ground. J.Exp. Biol. 205, pp. 1339–1353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Fischer, M.S., Witte, H.F. (2004). Evolution of Vertebrate Locomotory Systems. In: Pfeiffer, F., Zielinska, T. (eds) Walking: Biological and Technological Aspects. International Centre for Mechanical Sciences, vol 467. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2772-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2772-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-22134-1

  • Online ISBN: 978-3-7091-2772-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics