Griffith Theory Revisited

  • Jean-Jacques Marigo
Part of the International Centre for Mechanical Sciences book series (CISM, volume 447)


Throughout the section, Ω denotes a bounded connected open domain of ℝ N , 1 ≤N ≤3, with smooth boundary ∂Ω the surface measure of which is finite and such that Ω is the interior of \(\bar \Omega \). As such, Ω represents the crack-free reference configuration of an elastic body.


Energy Release Rate Crack Evolution Bulk Energy Slender Beam Debond Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdelmoula, R., and Marigo, J.-J. (1991). Etude par la méthode des développements asymptotiques raccordés de l’assouplissement induit par une fissure dans une poutre en traction. E.D.F. Bulletin de la Direction des Etudes et Recherches 4: 45–80.MathSciNetGoogle Scholar
  2. Ambrosio, L., and Tortorelli, V. M. (1990). Approximations of functionals depending on jumps by elliptic functionals via I’-convergence. Comm. Pure Applied Math. XLIII: 999–1036.Google Scholar
  3. Barenblatt, G. I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7: 55–129.MathSciNetGoogle Scholar
  4. Bellettini, G., and Coscia, A. (1994). Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15: 105–123.MathSciNetCrossRefGoogle Scholar
  5. Bilteryst, F., and Marigo, J.-J. (2003). An energy based analysis of the pull-out problem. Ear. J. Mech., A/Solids 22: 55–69.MathSciNetCrossRefMATHGoogle Scholar
  6. Bourdin, B., Francfort, G. A., and Marigo, J.-J. (2000). Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48: 797–826.MathSciNetCrossRefMATHGoogle Scholar
  7. Braides, A. (1998). Approximation of Free-Discontinuity Problems. n1694 in Lectures Notes in Mathematics. Springer.Google Scholar
  8. Charlotte, M., Francfort, G. A., Marigo, J.-J., and Truskinovsky, L. (2000). Revisiting brittle fracture as an energy minimization problem: comparison of Griffith and Barenblatt surface energy models. In Benallal, A., ed., Proceedings of the Symposium on “Continuous Damage and Fracture”, 7–12. Elsevier, Paris.Google Scholar
  9. Choksi, R., Del Piero, G., Fonseca, I. and Owen, D. R. (1999). Structured deformations as energy minimizers in models of fracture and hysteresis. Mathematics and Mechanics of Solids 4: 321–356.MathSciNetCrossRefMATHGoogle Scholar
  10. Del Piero, G. (1999). One dimensional ductile-brittle transition, yielding, and structured deformations. In Argoul, P., Fremond, M., and NGuyen, Q. S., eds., Proceedings of the IUTAM Symposium “Variations de domaines et frontières libres en mécanique”, 197–202. Paris, 1997.Google Scholar
  11. Francfort, G. A., and Larsen, C. (2002). Existence and convergence for quasistatic evolution in brittle fracture. (to appear) Google Scholar
  12. Francfort, G. A., and Marigo, J.-J. (1998). Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (8): 1319–1342.MathSciNetCrossRefMATHGoogle Scholar
  13. Geymonat, G., Krasucki, F., and Marigo, J.-J. (1987). Stress distribution in anisotropic elastic composite beams. In Ciarlet, P. G., and Sanchez Palencia, E., eds., Applications of multiple scalings in Mechanics, 118–133. Masson, Paris.Google Scholar
  14. Griffith, A. (1920). The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London CCXXI-A: 163–198.Google Scholar
  15. Hashin, Z. (1996). Finite thermoelastic fracture criterion with application to laminate cracking analysis. J. Mech. Phys. Solids 44 (7): 1129–1145.CrossRefGoogle Scholar
  16. Hutchinson, J. W., and Jensen, H. M. (1990). Models of fibre debonding and pullout in brittle composites with friction. Mech. Materials 9: 139–163.CrossRefGoogle Scholar
  17. Kerans, R., and Parthasarathy, T. A. (1991). Theoretical analysis of the fibre pullout and pushout tests. J. Am. Ceram. Soc. 74: 1585–1596.CrossRefGoogle Scholar
  18. Leguillon, D., Lacroix, C., and Martin, E. (2000). Interface debonding ahead of a primary crack. J. Mech. Phys. Solids 48: 2137–2161.CrossRefMATHGoogle Scholar
  19. Leguillon, D. (1989). Calcul du taux de restitution d’énergie au voisinage d’une singularité. C. R. Acad. Sci. Paris Série II b 309: 945–950.MATHGoogle Scholar
  20. Mumford, D., and Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Applied Math. XLII: 577–685.Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Jean-Jacques Marigo
    • 1
  1. 1.Institut GaliléeUniversité Paris-NordFrance

Personalised recommendations