Ageing and durability of concrete structures

  • Gilles Pijaudier-Cabot
  • Khalil Haidar
  • Ahmed Loukili
  • Mirvat Omar
Part of the International Centre for Mechanical Sciences book series (CISM, volume 461)


The serviceability of concrete structures is a coupled problem in which fracture and damage are coupled with several environmental attacks. In this chapter, we start with the investigation of chemo-mechanical damage due to calcium leaching. We show that the fracture characteristics, namely the internal length in continuum models evolve with ageing. This observation is confirmed with experiments on model materials. Acoustic emission data and size effect tests data are strongly correlated with the evolution of the microstructure of the material. This chapter concludes on some creep tests designed to investigate the coupled effect between creep and fracture.


Acoustic Emission Fracture Energy Concrete Structure Creep Test Damage Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazant Z.P. 1988, Mathematical modeling of creep and shrinkage of concrete, John Wiley & Sons Ltd.Google Scholar
  2. Bazant Z.P., 1994, Nonlocal Damage Theory based on Micromechanics of Crack Interactions, ASCE Journal of Engineering Mechanics, 120, 593–617.CrossRefGoogle Scholar
  3. Bazant Z.P. and Planas J., 1998, Fracture and size effect in concrete and other quasibrittle materials “, CRC press, Boca Raton and London, 1998.Google Scholar
  4. Bazant Z.P. and Pijaudier-Cabot G., 1988, Nonlocal Continuum Damage, Localization Instability and Convergence, Journal of Applied Mechanics, ASME, 55, 287–294.MATHGoogle Scholar
  5. Carde C., 1996, Characterization and modeling of the alteration of material properties due to leaching of cement-based materials, Ph.D. thesis, Université Paul Sabatier, Toulouse, France, 218 p. (in French).Google Scholar
  6. Carde C. and Francois R., 1997, Effect of Leaching of Calcium Hydroxyde from Cement Paste on Mechanical and Physical Properties, Cement and Concrete Res., 27, 539–550.CrossRefGoogle Scholar
  7. Diez, P., Arroyo, M., Huerta, A., 2002, Adaptive Simulation of the Coupled ChemoMechanical Concrete Degradation, Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), July 7–12, 2002, Vienna, Austria, Editors: Mang, H.A.; Rammerstorfer, F.G.; Eberhardsteiner, J., Publisher: Vienna University of Technology, Austria, ISBN 3–9501554–0–6,
  8. Gettu, R., Bazant, Z.P., 1992, Rate effects and load relaxation: static fracture of concrete. ACI Materials J. 89 (5), 456–468.Google Scholar
  9. Gérard, B., 1996, Contribution of the mechanical, chemical, and transport couplings in the long-term behavior of radioactive waste repository structures, Ph.D. Thesis, Département de Génie Civil, Université Laval, Québec, Canada/École Normale Supérieure de Cachan, France, 278 p. (in French).Google Scholar
  10. Gérard B., Pijaudier-Cabot G. and La Borderie C., 1998, Coupled Diffusion-Damage Modelling and the Implications on Failure due to Strain Localisation, Int. J. Solids & Structures, 35, 4105–4120.Google Scholar
  11. Gérard B., Pijaudier-Cabot G., and Le Bellégo C., 1999, Calcium Leaching of Cement Based Materials: a Chemo-Mechanics Application, Construction Materials — Theory and Application, Hans — Wolf Reinhardt Zum 6 Geburstag, R. Eligehausen Ed., ibidem, 313–329.Google Scholar
  12. Goncalves A., Rodrigues X., 1991, The Resistance of Cement to Ammonium Nitrate Attack, Durability of concrete, 2’ International Conference, Montreal, Canada.Google Scholar
  13. Granger L.; 1995, Comportement différé du béton dans les enceintes de centrales nucléaires (analyse et modélisation). Thèse de doctorat de l’ENPC.Google Scholar
  14. Haidar K., Pijaudier-Cabot G., Dubé J.F. and Loukili A., 2003, Correlation Between the Internal Length, the Fracture Process Zone and Size Effect in Mortar and Model Materials. Submitted for publication to Concrete Science and Engineering.Google Scholar
  15. Kuhl D., Bangert F., and Meschke G.,2000, An Extension of Damage Theory to Coupled Chemo-Mechanical Processes, Proc. ECCOMAS 2000, Barcelona, Sept.Google Scholar
  16. Le Bellégo C., Gérard B., and Pijaudier-Cabot G., 2000, Chemomechanical Effects in Mortar Beams Subjected to Water Hydrolysis, J. Engrg. Mech. ASCE, 126, 266–272.Google Scholar
  17. Le Bellégo C., 2001, Couplages chimie-mécanique dans les structures en béton attaquées par l’eau: Etude expérimentale et analyse numérique, Ph.D. Dissertation, École Normale Supérieure de Cachan, France, 236 p.Google Scholar
  18. Le Bellégo C., Dubé J.F., Pijaudier-Cabot G., and Gérard B., 2003a, Calibration of Non Local Damage Model from Size Effect Tests, Eur. J. of Mechanics A/Solids, 22, 33–46.Google Scholar
  19. Le Bellégo C., Pijaudier-Cabot G., Gérard B., Dubé, J.F. and Molez L., 2003b, Coupled Chemical and Mechanical Damage in Calcium Leached Cementitious Structures, ASCE J. Engrg. Mech., 129, 333–341.Google Scholar
  20. Mazars J., 1984, Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture de béton de structure, thèse de Doctorat d’Etat, Université Paris VI, France.Google Scholar
  21. Mazars J., Pijaudier-Cabot O., 1996, From Damage to Fracture Mechanics and Conversely: a Combined Approach, Int. J. Solids & Structures, 33, 3327–3342.Google Scholar
  22. Mazzotti C. and Savoia M., 2003, Nonlinear creep damage model for concrete under uniaxial compression, J. Engrg. Mech. ASCE, 129, 1065–1075.CrossRefGoogle Scholar
  23. Meftah, F., Nechnech, W., and Reynouard, J.M., 2000, An Elasto-Plastic Damage Model for Plain Concrete Subjected to Combined Mechanical and High Temperature Loads, Proc. EM2000, edited by J. L. Tassoulas, University of Austin, Texas.Google Scholar
  24. Omar M., Pijaudier-Cabot G., and Loukili A, 2003, Etude du couplage endommagement -fissuration, Revue Française de Génie Civil, in press.Google Scholar
  25. Pijaudier-Cabot G. and Bazant Z.P., 1987, Nonlocal Damage Theory, J. of Engrg. Mech., ASCE, 113, 1512–1533.CrossRefGoogle Scholar
  26. Pijaudier-Cabot G., Haidar K., and Dubé J.F., 2003, Non Local Damage Model with Evolving Internal Length, Int. J. Num. Anal. Meths. Geomech., in press.Google Scholar
  27. RILEM Draft Recommendations, 1990, Size effect method for determining fracture energy and process zone size of concrete, 23, 461–465.Google Scholar
  28. Rodriguez-Ferran, A. and Huerta A., 2000, Error Estimation and Adaptivity for Non Local Models, Int. J. Solids & Struct., 37, 7501–7528.Google Scholar
  29. Rüsch H., 1957, Versuche zur Bestimmung des Einflusses der Zeit auf Festigkeit and Verformung, (Experimental Determination of the effect of the Duration of Loading on Strength and Deformation), Final Report, Fifth Congress, International Association for Bridge and Structural Engineering, Portugal, 237–244.Google Scholar
  30. Rüsch H., Sell R., Rasch C., Stöckl S., 1958, Investigations on the Strength of Concrete under Sustained Load, RILEM Symposium on the Influence of Time on the Strength and Deformation of concrete, Munich.Google Scholar
  31. Saetta, A., Scotta, R. and Vitaliani, R., 1999, Coupled Environmental-Mechanical Damage Model of RC Structures, J. Engrg. Mech. ASCE, 125, 930–940.Google Scholar
  32. Schneider U. and Chen S.W., 1998, The Chemomechanical Effect and the Mechanochemical Effect on High-Performance Concrete Subjected to Stress Corrosion, Cement and Concrete Research, 28, 509–522.CrossRefGoogle Scholar
  33. Schneider U. and Chen S. W., 1999, Behavior of High-Performance Concrete under Ammonium Nitrate Solution and Sustained Load, ACI Materials Journal, 96, 47–51.Google Scholar
  34. Stabler J. and Baker G., 2000, On the Form of Free Energy and Specific Heat in Coupled Thermo-Elasticity with Isotropic Damage, Int. J. Solids Struct., 37, 4691–4713.CrossRefMATHGoogle Scholar
  35. Ulm F.J. and Coussy O., 1996, Strength Growth as Chemo-Plastic Hardening in Early Age Concrete, J. of Enrg. Mech. ASCE, 122, 1123–1132.CrossRefGoogle Scholar
  36. Ulm F.J., Torrenti J.M., and Adenot F., 1999, Chemoporoplasticity of Calcium Leaching in Concrete, J. of Engrg. Mech. ASCE, 125, 1200–1211.Google Scholar
  37. Ulm F.J, Heukamp F.H. and Germaine J.T., 2001, Durability Mechanics of Calcium Leaching of Concrete and Beyond, Proc. of Framcos 4, R. de Borst et al. Eds, Balkema Pubs., 133–143.Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Gilles Pijaudier-Cabot
    • 1
  • Khalil Haidar
    • 1
  • Ahmed Loukili
    • 1
  • Mirvat Omar
    • 1
  1. 1.R&DO — GeMEcole Centrale de NantesFrance

Personalised recommendations