Slope Failure and the loss of controllability of the incremental response of a soil specimen subject to an arbitrary loading programme

  • Roberto Nova
Part of the International Centre for Mechanical Sciences book series (CISM, volume 461)


An analysis of the instability conditions of slopes, based on the concept of latent instability, is presented first. It is shown that, for special conditions, multiple strain rate solutions are possible under the same loading increment. Drained and undrained cases for sand and clay slopes are considered. For rapid loading of sandy slopes, the latent instability analysis allows the reasons of catastrophic collapses of very flat slopes to be explained. Latent instability can occur even under more general loading programmes in the hardening regime, provided the flow rule is non-associate and the stiffness matrix is not positive-definite. Failures due to loss of load control in undrained tests or shear or compaction band occurrence in axisymmetric tests are examples.


Shear Band Stiffness Matrix Slope Failure Stress Path Soil Specimen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Castellanza, R. 2002. Weathering effects on the mechanical behaviour of bonded geomaterials: an experimental, theoretical and numerical study. PhD Thesis, Politecnico di Milano.Google Scholar
  2. Coop, M.R. Atkinson, J.H. 1993. The mechanics of cemented carbonate sands. Géotechnique 43 (1): 5367.CrossRefGoogle Scholar
  3. Crosta G., Imposimato S., Nova R. 1997 Instability analysis of submarine slopes Proc. Progressive failure in geomechanics, Adachi et al. Eds., Nagoya, 689–694Google Scholar
  4. Darve F. 1978 Une formulation incrementale des lois rhéologiques. Application aux sols, Thèse docteur es- Sciences physiques, INPG Grenoble.Google Scholar
  5. Desrues J. (1984) La localisation de la déformation dans les matériaux granulaires. Thèse de Docteur ès Sciences, Grenoble.Google Scholar
  6. Drescher, A., Vardoulakis, I. Han, C. 1990. A biaxial apparatus for testing soils. Geotechnical Testing Journal ASTM 13 (2): 226–234Google Scholar
  7. di Prisco C., Matiotti R., Nova R. 1995 Theoretical investigation of the undrained stability of shallow submerged slopes Géotechnique, 45, 3, 479–496Google Scholar
  8. Gens, A. Nova, R. 1993. Conceptual bases for a constitutive model for bonded soils and weak rocks. In A. Anagnostopoulos, F. Schlosser, N. Kalteziotis R. Frank (Eds) Geotechnical Engineering of Hard Soils-Soft Rocks; Proc. Intern. Symp. Athens: 485–494. Rotterdam: BalkemaGoogle Scholar
  9. Imposimato S. and Nova R. (1997) `Instability of loose sand specimens in undrained tests’ Proceed. of the 4th Int. Workshop on Localization and Bifurcation Theory for Soils and Rocks, 313–322, Gifu (Japan) 28 September-2 OctoberGoogle Scholar
  10. Imposimato, S. Nova, R. 1998. An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sand. Mechanics of Cohesive Frictional Materials, 3 (1): 65–87CrossRefGoogle Scholar
  11. Imposimato, S. Nova, R. 2001. On the value of the second order work in homogeneous tests on loose sand specimens. In H.-B. Muehlhaus, A.V. Dyskin E. Pasternak (Eds), Bifurcation and localisation theory in Geomechanics: 209–216. Lisse: Swets Zeitlinger.Google Scholar
  12. Lade, P.V. 1992. Static instability and liquefaction of loose fine sandy slopes. J. Geotech. Engin. ASCE 118: 51–71CrossRefGoogle Scholar
  13. Leddra, M.J. 1988. Deformation on chalk through compaction and flow. PhD Thesis, Univ. of London.Google Scholar
  14. Nova, R. 1988. Sinfonietta classica: an exercise on classical soil modelling. In A. Saada G. Bianchini (Eds) Constitutive Equations for Granular non-cohesive soils; Proc. Intern. Symp., Cleveland: 501–519. Rotterdam-BalkemaGoogle Scholar
  15. Nova, R. 1992. Mathematical modelling of natural and engineered geomaterials. General lecture 1st E.C.S.M. Munchen, Eur.J. Mech. A/Solids, 11,Special issue: 135–154.Google Scholar
  16. Nova, R., Castellanza, R. Tamagnini, C. 2003. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation. International Journal Numerical and Analytical Methods in Geomechanics. 27, 705–732.CrossRefMATHGoogle Scholar
  17. Nova R., Wood D. M. 1979 A constitutive model for sand in triaxial compression I. J. Num. Anal. Meth. Geomech., 3, 3, 255–278.CrossRefGoogle Scholar
  18. Olsson, W. A. 1999. Theoretical and experimental investigation of compaction bands in porous rocks. J. Geophys. Res. 104: 7219–7228.CrossRefGoogle Scholar
  19. Ostrowksy A. and Taussky O. (1951) `On the variation of the determinant of a positive definite matrix’, Nederl. Akad. Wet. Proc., (A) 54, 333–351Google Scholar
  20. Rudnicki J. W. 2002. Conditions for compaction and shear bands in a transversely isptropic material. Int. J. Solids and Structures 39: 3741–3756.CrossRefMATHGoogle Scholar
  21. Rudnicki, J.W. Rice, J.R. 1975. Conditions for the localisation of deformation in pressure sensitive dilatant materials. J. Mech. Phys. Solids 23: 371–394CrossRefGoogle Scholar
  22. Schofield, A.N. Wroth, C. P. 1968. Critical State Soil Mechanics. Chichester: McGraw-Hill.Google Scholar
  23. Ziegler, H. 1968. Principles of structural stability. Waltham: Blaisdell Publishing CompanyGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Roberto Nova
    • 1
  1. 1.Department of Structural EngineeringMilan University of Technology (Politecnico)MilanItaly

Personalised recommendations