2nd Gradient Flow Theory of Plasticity

  • Ioannis Vardoulakis
Part of the International Centre for Mechanical Sciences book series (CISM, volume 461)


This chapter provides a brief introduction to the 2nd Gradient flow theories of plasticity with emphasis on strain softening and shear-banding.


Granular Material Bifurcation State Softening Model Plastic Volumetric Strain Schrodinger Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bogdanova-Boncheva, N. and Lipmann, H. (1975). Rotationsymmetrisches ebenes Fliessen eines granularen Modellmaterials. Acta Mechanica, 21: 93–113.CrossRefGoogle Scholar
  2. 2.
    Lerat, P., Schlosser, F., and Vardoulakis, I. (1997). Nouvel appareil de ciseillement pour l’étude des interfaces matériau granulaire-structure. 14th ICSMFE.Google Scholar
  3. 3.
    Mindlin, R.D. and Eshel, N.N. (1968). On first strain-gradient theories in linear Elasticity. Int. J. Solids Structures, 4: 109–124.CrossRefMATHGoogle Scholar
  4. 4.
    Mroz, Z. Mathematical Models of Inelastic Behavior. University of Waterloo Press, 1973.Google Scholar
  5. 5.
    Mühlhaus, H.-B. and Aifantis, E.C. (1991). A variational principle for gradient plasticity. Int. J. Solids Structures, 28: 845–857.CrossRefMATHGoogle Scholar
  6. 6.
    Mühlhaus H.-B. and Vardoulakis, I. (1987). The thickness of shear bands in granular materials. Géotechnique, 37: 271–283.CrossRefGoogle Scholar
  7. 7.
    Nguyen, Q.S. and Bui H.D. (1974). Sur les matériaux élastoplastiques à écrouissage positif ou négatif. Journal de Méchanique, 3: 322–432.Google Scholar
  8. 8.
    Raniecki, B. and Bruhns, O.T. (1981). Bounds to bifurcation stress in solids with non-associated plastic flow law at finite strain. J. Mech. Phys. Solids, 29: 153–172.CrossRefMATHMathSciNetGoogle Scholar
  9. Schaeffer, D. (1990). Instability and ill-posedness in the deformation of granular materials. Int. J. Num. Anal. Meth. In Geomechanics,14: 253–278.Google Scholar
  10. 10.
    Tejhman, J. and Wei Wu. (1995). Experimental and numerical study of sand-stell interfaces. Int. J. Num. Anal. Meth. Geomech., 19: 513–536.CrossRefGoogle Scholar
  11. 11.
    Unterreiner, F. and Vardoulakis, I. Interfacial localisation in granular media. Computer Methods in Geomechanics (Ed. Siriwardane Zaamn), Balkema, 1711–1715, 1994.Google Scholar
  12. 12.
    Vardoulakis, I. (1988). Stability and bifurcation in geomechanics. Numerical Methods in Geomechanics (Innsbruck 1988 ), Swoboda (ed.), Balkema, 155–167.Google Scholar
  13. 13.
    Vardoulakis, I. (1994). Potentials and limitations of softening models in geomechanics (The role of second order work). Europ. J. of Mechanics, A/Solids, 13: 195–226.MATHMathSciNetGoogle Scholar
  14. 14.
    Vardoulakis I. and Aifantis E. (1989). Gradient dependent dilatancy rule and its implications on shear banding and liquefaction. Ingenieur Archiv, 59: 197–208.CrossRefGoogle Scholar
  15. 15.
    Vardoulakis, I. and Frantziskonis, G. (1992). Micro-structure in kinematic-hardening plasticity. Eur. J. Mech. A Solids, 11: 467–486.MATHGoogle Scholar
  16. 16.
    Vardoulakis, I., Shah, K.R. and Papanastasiou P. (1992). Modelling of tool-rock interfaces using gradient-dependent flow theory of plasticity. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 29: 573–582.CrossRefGoogle Scholar
  17. 17.
    Vardoulakis I. and Sulem J.. Bifurcation Analysis in Geomechanics,Blackie Academic and Professional, 1995.Google Scholar
  18. 18.
    Zervos, A., Vardoulakis, I., Jean, M. and Lerat, P. (2000). Numerical investigation of granular kinematics. Mechanics of Cohesive-Frictional Materials, 5: 305–324.CrossRefGoogle Scholar
  19. 19.
    Zervos, A., Papanastasiou P. and Vardoulakis, I. (2001a). A finite Element displacement formulation for gradient elastoplasticity. Int. J. Num. Meth. Engrng., 50: 1369–1388.CrossRefMATHGoogle Scholar
  20. 20.
    Zervos, A., Papanastasiou P. and Vardoulakis, I. (2001b) Modeling of localization and scale effect in thick-walled cylinders with gradient elastoplasticity. Int. J. Solids Strucures, 38: 5081–5095.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Ioannis Vardoulakis
    • 1
  1. 1.Faculty of Applied Mathematics and Physics, Department of MechanicsNational Technical University of AthensGreece

Personalised recommendations