Advertisement

Linear Micro-elasticity

  • Ioannis Vardoulakis
Part of the International Centre for Mechanical Sciences book series (CISM, volume 461)

Abstract

This chapter provides a brief introduction to the theory of linear Elasticity with micro-structure. The relations between constitutive and balance stresses are derived and the issues of uniqueness and boundary conditions are addressed.

Keywords

Couple Stress Gradient Elasticity Strain Energy Density Function Balance Stress Torsional Surface Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amanatidou, E. and Aravas, N. (2002). Mixed finite element formulations of strain-gradient elasticity. Compt. Methods Appl. Mech. Engrg, 191: 1723–1751.CrossRefMATHGoogle Scholar
  2. 2.
    Casal, P. (1961). La capilaritè, interne. Cahier du Groupe Français d’Etudes de Rhéologie C.N.R.SVI no. 3, 31–37.Google Scholar
  3. 3.
    Cosserat, E. and F. Théorie des Corps Déformables. A. Hermann et Fils, Paris (1909).Google Scholar
  4. 4.
    Exadaktylos, G. (1998). Gradient elasticity with surface energy: Mode-I crack problem. Int. J. Solids Structures, 35: 421–456.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Exadaktylos, G. and Vardoulakis, I. (1998). Surface instability in gradient elasticity. Int. J. Solids Structures., 35: 2251–2281.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Exadaktylos, G. and Vardoulakis, I. (2001a). Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics Tectonophysics, 335: 81–109.Google Scholar
  7. 7.
    Exadactylos, G., Vardoulakis, I., and Aifantis, E. (1996). Cracks in gradient elastic bodies with surface energy. Int. J.Fract., 79: 107–119.CrossRefGoogle Scholar
  8. 8.
    Frantziskonis G. and Vardoulakis I. (1991). On the microstructure of surface instabilities. Eur. J. Mech. A/Solids, 11: 21–34.Google Scholar
  9. 9.
    Georgiadis, H.G. (2003). The mode III crack problem in microstructured solids governed by dipolar gradient elasticity: Static and dynamic analysis. J Appl. Mech.-T. ASME 70: 517–530.CrossRefMATHGoogle Scholar
  10. 10.
    Georgiadis, H.G. and Vardoulakis, I. (1998). Anti-plane shear Lamb’s problem treated by gradient elasticity with surface energy, Wave Motion, 28: 353–366.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Georgiadis, H.G. and Vardoulakis, I (2003). Dispersive generalized and high-frequency Rayleigh waves in a gradient-elastic half-space, in print.Google Scholar
  12. 12.
    Georgiadis, H.G., Vardoulakis, I. and Lykotrfitis G. (2000) Torsional surface waves in a gradient-elastic half-space, Wave Motion, 31: 333–348.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Georgiadis, H.G. and Velgaki, E.G. (2003). High-frequency Rayleigh waves in materials with micro-structure and couple-stress effects. Int. J Solids Struct. 40: 2501–2520.CrossRefMATHGoogle Scholar
  14. 14.
    Germain, P. (1973a). La mèthode des puissances virtuelles en mècanique des milieux continus. Part I. Journal de Mècanique, 12: 235–274.MATHMathSciNetGoogle Scholar
  15. 15.
    Germain, P. (1973b). The Method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM, J. Appl. Math, 25: 556–575.MATHMathSciNetGoogle Scholar
  16. 16.
    Günther, W. (1958). Zur Statik und Kinematik des Cosseratschen Kontinuums. Abhandlungen der Braunscheigschen Wissenschaftlichen Gesellschaft, Göttingen, Verlag E. Goltze, 101: 95–213.Google Scholar
  17. 17.
    Hermann, G (1972). Some applications of micromechanics. Experimental Mechanics, 12: 235–238.CrossRefGoogle Scholar
  18. 18.
    Kessel, S. (1964). Lineare Elastizitätstheorie des anisotropen Cosserat-Kontinuums. Abhandlungen der Braunscheigschen Wissenschaftlichen Gesellschaft, Göttingen, Verlag E. Goltze, 16, 1–22.Google Scholar
  19. 19.
    Koiter, W. T. (1964). Couple-stresses in the Theory of Elasticity. I II. Proc. Ned. Akad. Uet., 67: 17–29 30–44.Google Scholar
  20. 20.
    Mindlin, R.D., (1964). Microstructure in linear elasticity. Arch. Rat. Mech. Anal., 10: 51–77.MathSciNetGoogle Scholar
  21. 21.
    Mindlin, R.D. and Eshel, N.N. (1968). On first strain-gradient theories in linear Elasticity. Int. J. Solids Structures, 4: 109–124.CrossRefMATHGoogle Scholar
  22. 22.
    Schaeffer, H. (1962). Versuch einer Elastizitätstheorie des zweidimensionalen ebenen COSSERAT-Kontinuums. Miszellannenn der Angewandten Mechanik. Akademie Verlag, Berlin.Google Scholar
  23. 23.
    Schaeffer, H. (1967). Das Cosserat-Kontinuum. ZAMM, 47 /8: 485–498.CrossRefGoogle Scholar
  24. 24.
    Vardoulakis, I., Exadactylos,G. and Aifantis, E. (1995). Gradient elasticity with surface energy.Mode III crack problem. Int. J. Solids and Structures, 33: 4531–4559.Google Scholar
  25. 25.
    Vardoulakis, I. and Georgiadis, H.G. (1997). SH surface waves in a homogeneous gradient-elastic half-space with surface energy, Journal of Elasticity, 47: 147–165.CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Vardoulakis, I. and Sulem, J. Bifurcation Analysis in Geomechanics, Blackie Academic and Professional, 1995.Google Scholar

Recent Research Literature

  1. 1.
    Askes, H., Suiker, A.S.J. and Sluys, L.J. (2002). A classification of higher-order strain-gradient models–linear analysis. Arch. Appl. Mech., 72: 171–188.CrossRefMATHGoogle Scholar
  2. 2.
    Exadaktylos, G. (1999). Some basic half-plane problems of the cohesive elasticity theory with surface energy. Acta Mech., 133: 175–198.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Fannjiang, A.C., Chan Y.S. and Paulino, G.H. (2002). Strain gradient elasticity or antiplane shear cracks: A hypersingular integrodifferential equation approach. SIAM J Apll. Math. 62: 1066–1091.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Kalpakides, V.K. and Agiasofitou, A.K. (2002). On material equations in second gradient electroelasticity. J Elasticity 67: 205–227.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Luzon, F, Ramirez, L., Sanchez-Sesma, F.J., et al. (2003). Propagation of SH elastic waves in deep sedimentary basins with an oblique velocity gradient. Wave Motion, 38: 11–23.CrossRefMATHGoogle Scholar
  6. 6.
    Manolis, G.D. (2000). Some basic solutions for wave propagation in a rod exhibiting non-local elasticity. Eng. Anal. Bound. Elem., 24: 503–508.CrossRefMATHGoogle Scholar
  7. 7.
    Paulino, G.H., Fannjiang, A.C., and Chan. Y.S. (2003). Gradient elasticity theory for mode III fracture in functionally graded materials–Part I: Crack perpendicular to the material gradation. JAppl. Mech. — T. ASME 70: 531–542.CrossRefMATHGoogle Scholar
  8. 8.
    Polizzotto C., (2001). Nonlocal elasticity and related variational principles. Int. J. Solids Struct., 38: 7359–7380.CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Polizzotto, C. (2002). Thermodynamics and continuum fracture mechanics for nonlocalelastic plastic materials. Eur. J. Mech. A- Solids, 21: 85–103.CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Polizzotto, C. (2003). Unified thermodynamic framework-for nonlocal/gradient continuum theories. Eur. J Mech. A-Solid, 22: 651–668.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Polyzos, D., Tsepoura, K.G., Tsinopoulos, S., et al. (2003). A boundary element method for solving 2-D and 3-D static gradient elastic problems–Part I: Integral formulation. Comput. Method. Appl. Mech., 192: 2845–2873.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Tsepoura K.G., Papargyri-Beskou, S. and Polyzos, D. (2002). A boundary element method for solving 3D static gradient elastic problems with surface energy. Comput. Mech., 29: 361–381.CrossRefMATHGoogle Scholar
  13. 13.
    Tsepoura, K.G., Papargyri-Beskou, S., Polyzos, D. et al. (2002). Static and dynamic analysis of a gradient-elastic bar in tension. Arch. Appl. Mech., 72: 483–497.CrossRefMATHGoogle Scholar
  14. 14.
    Tsepoura, K.G. and Polyzos, D. (2003). Static and harmonic BEM solutions of gradient elasticity problems with axisymmetry. Comput. Mech., 32: 89–103.CrossRefMATHGoogle Scholar
  15. 15.
    Zhou, D. and Jin, B. (2003). Boussinesq-Flamant problem in gradient elasticity with surface energy. Mech. Res. Comun. 30: 463–468.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Ioannis Vardoulakis
    • 1
  1. 1.Faculty of Applied Mathematics and Physics, Department of MechanicsNational Technical University of AthensGreece

Personalised recommendations