Continuum damage modelling in geomechanics

  • Gilles Pijaudier-Cabot
  • Ludovic Jason
  • Antonio Huerta
  • Jean-François Dubé
Part of the International Centre for Mechanical Sciences book series (CISM, volume 461)


Continuum damage mechanics is a framework for describing the variations of the elastic properties of a material due to microstructural degradations. This chapter presents the application of this theory to the modelling of concrete. Several constitutive relations are devised, including incremental, explicit, and non local damage models. A general framework for damage induced anisotropy is also presented. Coupled damage and plasticity modelling is discussed. Finally, the issue of the experimental determination of the internal length in non local models is tackled.


Internal Length Continuum Damage Modelling Quasibrittle Material Crack Closure Effect Gradient Damage Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Askes H., 2000, Advanced spatial discretisation strategies for localised failure. mesh adaptivity and meshless methods, PhD Thesis, Delft University of Technology, Faculty of Civil Engineering and Geosciences.Google Scholar
  2. Bazant, Z.P., and Pijaudier-Cabot, G., 1989, Measurement of the characteristic length of non local continuum, J. Engrg. Mech. ASCE, 115, 755–767.CrossRefGoogle Scholar
  3. Bazant, Z.P. and Planas, J., 1998, Fracture and size effect in concrete and other quasibrittle Materials, CRC Press.Google Scholar
  4. Benallal A., Billardon R., Geymonat G., 1993, Bifurcation and rate-independent materials, Bifurcation and stability of dissipative systems, CISM Lecture Notes 327, Springer, 1–44.Google Scholar
  5. de Borst R., Sluys L.J., Muhlhaus H.B., and Pamin J., 1993, Fundamental issues in finite element analyses of strain localisation, Engrg. Comput., 10, 99–121.CrossRefGoogle Scholar
  6. Carmeliet J., 1999, Optimal estimation of gradient damage parameters from localization phenomena in quasi-brittle materials, Int.J. Mech. Cohesive Frict. Mats., 4, 1–16.CrossRefGoogle Scholar
  7. Etse, G. Willam, K., 1994, Fracture energy formulation for inelastic behavior of plain concrete. J. Engrg. Mech. ASCE, 120, 1983–2011.CrossRefGoogle Scholar
  8. Fichant S., La Borderie C., and Pijaudier-Cabot G., 1999, Isotropic and anisotropic descriptions of damage in concrete structures, Int.J. Mech. Cohesive Frict. Mats., 4, pp. 339–359.CrossRefGoogle Scholar
  9. Grassl, P. Lundgren, K. Gylltoft, K., 2002, Concrete in compression: a plasticity theory with a novel hardening law, International Journal of Solids and Structures 39: 5205–5223.CrossRefMATHGoogle Scholar
  10. Godard V., 2001, Modélisation mécanique non locale des matériaux fragiles: délocalisation de la déformation, Stage de DEA de Mécanique, Université Pierre et Marie Curie.Google Scholar
  11. Godard V., 2003, Modélisation non locale à gradients de déformation, Documentation de référence Code_Aster R5.04.02, Google Scholar
  12. La Borderie C., 1991, Phénomènes unilatéraux dans un matériau endommageable, Thèse de Doctorat de l’Université Paris 6.Google Scholar
  13. Le Bellego C., Dubé J-F., Pijaudier-Cabot G., B. Gérard, 2003, Calibration of nonlocal damage model from size effect tests, European Journal of Mechanics A/Solids, 22, 33–46.CrossRefMATHGoogle Scholar
  14. Le Bellego, C., Gérard B., and Pijaudier-Cabot G., 2000, Chemomechanical effects in mortar beams subjected to water hydrolysis, J. Engrg. Mech. ASCE, 126, 266–272.Google Scholar
  15. Lemaitre J., 1992, A course on damage mechanics, Springer-Verlag.Google Scholar
  16. Mazars J., 1984, Application de la mécanique de l’endommagement au comportement non linéaire et à la rupture du béton de structure, Thèse de Doctorat ès Sciences, Université Paris 6.Google Scholar
  17. Nadai A., 1950, Theory of flow and fracture of solids, Vol. 1, second edition, Mc Graw Hill, New York, p. 572.Google Scholar
  18. Peerlings R.H., de Borst R., Brekelmans W.A.M., de Vree J.H.P., 1996, Gradient enhanced damage for quasi-brittle materials, Int. J. Num. Meth. Engrg., 39, 3391–3403.CrossRefMATHGoogle Scholar
  19. Peerlings R.H., de Borst R., Brekelmans W.A.M, Geers M.G.D., 1998, Gradient enhanced modelling of concrete fracture, Int.J. Mech. Cohesive Frict. Mats., 3, 323–343.CrossRefGoogle Scholar
  20. Picandet, V. Khelidj, A. Bastian, G., 2001, Effect of axial compressive damage on gas permeability of ordinary and high-performance concrete, Cement and Concrete Research, 31, 1525–1532.CrossRefGoogle Scholar
  21. Pijaudier-Cabot G. and Bazant Z.P., 1987, Nonlocal damage theory, J. of Engrg. Mech., ASCE, 113, 1512–1533.CrossRefGoogle Scholar
  22. Pijaudier-Cabot G., Mazars J., and Pulikowski J., 1991, Steel-concrete bond analysis with nonlocal continuous damage, J. of Structural Engineering, ASCE, 117, 862–882.Google Scholar
  23. Sfer, D., Carol I. Gettu R., Etse, G., 2002, Study of the behavior of concrete under triaxial compression, J. Engrg. Mech. ASCE, 128, 156–163.CrossRefGoogle Scholar
  24. Sinha, B.P. Gerstle, K.H. Tulin, L.G., 1964, Stress strain relations for concrete under cyclic loading. Journal of the American concrete institute, 195–211.Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Gilles Pijaudier-Cabot
    • 1
  • Ludovic Jason
    • 1
    • 4
  • Antonio Huerta
    • 2
  • Jean-François Dubé
    • 3
  1. 1.R&DO — GeMEcole Centrale de NantesFrance
  2. 2.Laboratori de Càlcul NumèricUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.LMGC/UMR5508Université de Montpellier IIFrance
  4. 4.EDF R&DClamartFrance

Personalised recommendations