Development of Elastoplastic Strain Hardening Models of Soil Behaviour

  • Roberto Nova
Part of the International Centre for Mechanical Sciences book series (CISM, volume 461)


The paper presents the historical development of fundamental concepts related to the modelling of the non-linear and irreversible behaviour of soils. The concepts of failure, flow rule, successive yield surfaces and hardening rules are recalled. The original Granta Gravel and Cam Clay models are presented and discussed. The basic structure of the work-hardening model of Lade is sketched. The strain-hardening model of Nova and Wood, together with its successive modifications, is described in greater detail and numerous comparisons between experimental data and theoretical predictions are shown.


Plastic Potential Volumetric Strain Triaxial Test Triaxial Compression Stress Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldi G., Nova R. (1983) Effetti della penetrazione della membrana in prove di liquefazione R. 15° Cong. Naz. Geotecnica, Spoleto, 1, 3–12.Google Scholar
  2. Borsetto M., Imperato L., Nova R., Peano A. (1983) Effects of pressuremeter of finite length in soft clay. Proc. Int. conf. ‘In Situ Testing’ Paris, 2, 211–215.Google Scholar
  3. Botti E., Canetta G., Nova R., Peduzzi R. (1988) An application of a strain hardening model to the design of tunnels in sand. Proc. 6th ICONMIG, Innsbruck, 3, 1641–1646.Google Scholar
  4. Boussinesq J. (1885) Applications des potentielles a 1’etude de 1’equilibre et du mouvement des solides elastiques. Gauthier-Villars, Paris.Google Scholar
  5. Britto A. M., Gunn M. J. (1987) Critical State Soil Mechanics via Finite elements. Ellis Horwood.Google Scholar
  6. Burland J. B. (1967) Deformation of soft clay. Ph. D., Thesis, University of Cambridge.Google Scholar
  7. Castro G. (1969) Liquefaction of sand. Harvard SM Series N. 81Google Scholar
  8. Cerruti V. (1882) Rend. Accademia Lincei Mem. Fis. Mat. Google Scholar
  9. Cole E. R. (1967) Soils in the simple shear apparatus. Ph. D. Thesis University of Cambridge.Google Scholar
  10. Coulomb A. (1976) Essai sur une application des règles des maximis et minimis a quelques problèmes de statique relatifs a l’architecture. Mem. de Mat. et de Phys. 7, 1773, 343–382, Paris.Google Scholar
  11. Drucker D. C., Gibson R. E., Henkel D. J. (1957) Soil Mechanics and workhardening theories of plasticity. Trans. ASCE, 122, 338–346.Google Scholar
  12. Drucker D. C., Prager W. (1952) Soil mechanics and plastic analysis or limit design. Quart. App. Math. 10, 2, 157–165.MATHMathSciNetGoogle Scholar
  13. El-Sohby M. A. (1964) The behaviour of particulate materials under stress. Ph. D. Thesis, University of Manchester.Google Scholar
  14. Gens A., Potts D. M. (1988) Critical state models in computational geomechanics Eng. Comp. 5, 178–197.Google Scholar
  15. Gudehus G., Darve F., Vardoulakis I. (1984) Constitutive modelling of soil behaviour. Proc. Grenoble Workshop, September 1982, Balkema.Google Scholar
  16. Holubec I. (1966) The yielding of cohesionless soils. Ph. D. thesis, University of Waterloo.Google Scholar
  17. Ishihara K., Tatsuoka F., Yasuda S. (1975) Undrained deformation and liquefaction of sand under cyclic stresses. Soils and Foundations 15, 1, 29–44.CrossRefGoogle Scholar
  18. Jamiolkowski M., Lancellotta R., Marchetti S., Nova R., Pasqualini E., (1979) General report design parameters for soft clay, 7 ECSMFE, Brighton, State of the art volume 1–39.Google Scholar
  19. Kelvin Lord, (Thomson W.) (1855) Quart J. of Math. Google Scholar
  20. Kim M. K., Lade P. V. (1988) Single hardening constitutive model for frictional materials I. Plastic potential function. Computers and Geotechnics, 5, 4, 397–324.CrossRefGoogle Scholar
  21. Lade P. V. (1977) Elastoplastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids abd Structures, 13, 1019–1035.CrossRefMATHGoogle Scholar
  22. Lade P. V. (1988) Double hardening constitutive model for soils parameter determination and predictions for two sands. Proc. Cleveland Workshop Constitutive Equations for Granular Non-Cohesive Soils, 367–382.Google Scholar
  23. Lade P. V., Nelson R. B. (1987) Modelling the elastic behaviour of granular materials. Int. J. Num. An. Meth. Geom., 11, 5, 521–542.CrossRefGoogle Scholar
  24. Lade P. V., Kim M. K. (1988) Single hardening constitutive model for frictional materials II. Yield criterion and plastic work contours. Computers and Geotechnics, 6, 1, 13–30.CrossRefGoogle Scholar
  25. Lade P. V., Kim M. K. (1988) Single hardening constitutive model for frictional materials III. Comparison with experimental data. Computers and Geotechnics, 6, 1, 31–48.CrossRefGoogle Scholar
  26. Lode W. (1926) Versuche uber den Einfluss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen, Kupfer and Nickel, 2, Physik 36, 913–939.CrossRefGoogle Scholar
  27. Matsuoka H., Nakai T. (1974) Stress deformation and strength characteristics under three different principal stresses. Proc. JSCE 232, 59–70.Google Scholar
  28. Matsuoka H., Nakai T. (1982) A new failure condition for soils in three-dimensional stresses. Proc. IUTAM conf. Deformation and Failure of Granular Materials, Delft, 253–263.Google Scholar
  29. Mises R. von (1913) Mechanik der festen Korper in plastisch deformablen Zustand. Gottinger Nachrichten, Math. Phys. Kl. 582–592.Google Scholar
  30. Mroz W. (1967) On the description of anisotropic work hardening. I. J. Mech. Phys. Solids 15, 163–175.CrossRefGoogle Scholar
  31. Namy D. (1970) An investigation of certain aspects of stress strain for clay soils. Ph. D. thesis, Cornell University.Google Scholar
  32. Nova R. (1977) On the hardening of soils. Archiv. Mech. Stos. 29, 3, 445–458.Google Scholar
  33. Nova R. (1982) A model of soil behaviour in plastic and hysteretic ranges. Part I–monotonic loading. Proc. Int. workshop ‘Constitutive modelling of soils behaviour’ Villard de Lans, published 1984, 289–309.Google Scholar
  34. Nova R. (1988) Sinfonietta classica: an exercise on classical soil modelling. Proc. Symp. Constitutive Equations for Granular non-cohesive soils, Cleveland.Google Scholar
  35. Nova R., Hueckel T. (1980) A geotechnical stress variables approach to cyclic behaviour of soils. Proc. Behaviour of soils under cyclic and transient loading. Swansea, 1, 301–314.Google Scholar
  36. Nova R., Hueckel T. (1981) A unified approach to the modelling of liquefaction and cyclic mobility. Soils and Foundations 21, 13–28.CrossRefGoogle Scholar
  37. Nova R., Wood D. M. (1978) An experimental programme to define the yield function for sand. Soils and Foundations 18, 4, 77–86.CrossRefGoogle Scholar
  38. Nova R., Wood D. M. (1979) A constitutive model for sand in triaxial compression. I. J. Num: Anal. Meth. Geomech. 3, 3, 255–278.Google Scholar
  39. Poorooshasb H. B. (1971) Deformation of sand in triaxial compression. 4th Asian Reg. Conf on Soil Mech., Bangkok, 1, 63–66.Google Scholar
  40. Poorooshasb H. B., Holubec I., Sherbourne A. N. (1966) Yielding and flow of sand in triaxial compression. (Part I), Can Geotech. J 3, 4, 179–190.CrossRefGoogle Scholar
  41. Poorooshasb H. B., Holubec I., Sherbourne A. N. (1967) Yielding and flow of sand in triaxial compression. (Parts II and III), Can Geotech. J. 4, 4, 376–397.CrossRefGoogle Scholar
  42. Poulos H. G., Davis E. H (1974) Elastic solutions for soil and rock mechanics. Wiley.Google Scholar
  43. Rendulic L. (1937) Ein Grundgesetz der Tonmechanik and sein experimenteller Beweis. Bauingenieur, 18, 459–467.Google Scholar
  44. Roscoe K. H., Schofield N. A., Wroth C. P (1958) On the yielding of soils. Geotechnique, 8, 22–53.CrossRefGoogle Scholar
  45. Rowe P. W. (1962) The stress dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. Roy. Soc., A269, 500–527.CrossRefGoogle Scholar
  46. Saada A., Bianchini G. (1988) Constitutive equations for granular non cohesive soils. Proc. Int. Workshop, Cleveland 22–24 July 1987, Balkema.Google Scholar
  47. Schofield N. A., Wroth C. P (1968) Critical State Soil Mechanics. McGraw-Hill, London.Google Scholar
  48. Stroud M. A. (1971) The behaviour of sand at low stress levels in the simple shear apparatus. Ph. D., Thesis. University of Cambridge.Google Scholar
  49. Vesic A. S., Clough G. V. (1968) Behaviour of granular materials under high stresses. J. Soil Mech. Found. Div., Proc. ASCE, 94, SM3, 661–688.Google Scholar
  50. Taylor G. I., Quinney H. (1931) The plastic distortion of metals. Phil. Trans. Roy. Soc. A, 230, 323–362.CrossRefMATHGoogle Scholar
  51. Terzaghi K. (1923) Die berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungsuscheinungen. Akad. Der Wissens. Wien, Math. -naturwiss. kl. Part. IIa, 132, 3 /4 125–138.Google Scholar
  52. Terzaghi K. (1925) Erdbaumechanik auf Bodenphysicalischer Grundlage. Vienna, Denticke.Google Scholar
  53. Tresca H. (1868) Memoire sur l’ecoulement des corps solides. Mem. Pres par div. Savants 18, 733–799.Google Scholar
  54. Vermeer P. A. (1978) A double hardening model for sand. Géotechnique 28, 4, 413–433.CrossRefGoogle Scholar
  55. Wroth C. P. (1977) The predicted performance of a soft clay under a trial embankment loading based on the Cam Clay model. in Finite Elements in Geomechanics. G. Gudehus Editor, CH 6, Wiley.Google Scholar
  56. Zienkiewicz O. C., Humpheson C., Lewis R. W. (1975) Associated and non-associated viscoplasticity and plasticity in Soil Mechanics. Géotechnique 25, 4, 671–689.CrossRefGoogle Scholar
  57. Zytynsky M., Randolph M. F., Nova R., Wroth C. P. (1978) On modelling the unloading-reloading behaviour of soils. I. J. Num. Anal. Meth. Geomech. 2, 87–94.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Roberto Nova
    • 1
  1. 1.Department of Structural EngineeringMilan University of Technology (Politecnico)MilanItaly

Personalised recommendations