Advertisement

Modelling of Landslides: (I) Failure Mechanisms

  • M. Pastor
  • J. A. Fernandez Merodo
  • E. Gonzalez
  • P. Mira
  • T. Li
  • X. Liu
Part of the International Centre for Mechanical Sciences book series (CISM, volume 461)

Abstract

This paper presents a theoretical and numerical framework to model the initiation mechanisms of catastrophic landslides. The equations describing the coupling between the solid skeleton and the pore fluids are presented following an eulerian approach based on the mixture theory that can provide a unified formulation for both initiation and propagation phases. The system of Partial Differential Equations is then discretized using the classical Galerkin Finite Element Method and neglecting the convective terms. Some applications to localized and diffuse failure will be presented.

Keywords

Pore Pressure Effective Stress Saturated Soil Pore Fluid Sand Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. A. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164, 1941.CrossRefMATHGoogle Scholar
  2. M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185, 1955.CrossRefMATHMathSciNetGoogle Scholar
  3. A. W. Bishop, The stability of tips and spoil heaps. Quart. J. Eng. Geol. 6, 335–376, 1973.CrossRefGoogle Scholar
  4. L. Calembert & R. Dantinne, The avalanche of ash at Jupille (Liege) on February 3rd, 1961. From: The commemorative volume dedicated to Professeur F. Campus, pp. 41–57, Liége, Belgium, 1964.Google Scholar
  5. W. F. Chen, Limit Analysis and Soil Plasticity, Elsevier, 1975.Google Scholar
  6. O. Coussy, Mechanics of Porous Media, John Wiley and Sons, Chichester, 1995.Google Scholar
  7. R. Dikau, D. Brundsen,L. Schrott and M. L. Ibsen, Landslide Recognition, John Wiley and Sons, 1996.Google Scholar
  8. R. de Boer, Theory of porous media, Springer-Verlag, Berlin, 2000.CrossRefMATHGoogle Scholar
  9. F. Darve and F. laouafa, Constitutive Equations and Instabilities of Granular Materials, in Modeling and Mechanics of Granular and Porous Materials, G. Capriz, V. N. Ghionna and P. Giovine (Eds), pp. 3–44, Birkhäuser, 2002.Google Scholar
  10. Jose Antonio Fernandez-Merodo, Une Approche a la modelisation des glissements et des effonfrements de terrains: Initiation et Propagation, Ecole Centrale de Paris, December 2001.Google Scholar
  11. M. G. Katona and O. C. Zienkiewicz, “A unified set of single-step algorithms, Part 3: the beta-m method, a generalisation of the Newmark scheme”, Int. J. Num. Metheng., 21, 1345–1359, 1985.Google Scholar
  12. R. L. Lewis and B. A. Schrefler, The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, J. Wiley and Sons, 1998.Google Scholar
  13. M. Mabssout and M. Pastor, A Taylor-Galerkin algorithm for shock wave propagation and strain localization failure of viscoplastic continua, Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 7–8, pp. 955–972, 2003.CrossRefMATHGoogle Scholar
  14. P. Mira, Ph. D. Thesis, Universidad Politécnica de Madrid, Madrid, 2002.Google Scholar
  15. M. Pastor, T. Li,X. Liu and O. C. Zienkiewicz, “Stabilized Low order Finite Elements for Failure and Localization Problems in Undrained Soils and Foundations”. Comp. Meth. Appl. Mech. Eng. 174, 219–234, 1999.CrossRefMATHMathSciNetGoogle Scholar
  16. M. Pastor, M. Quecedo, J. A. Ferndndez Merodo, M. I. Herreros, E. Gonzalez, and P. Mira, Modelling Tailing dams and mine waste dumps failures, Geotechnique, Vol. 52, No. 8, pg. 579–591, 2002.CrossRefGoogle Scholar
  17. M. Pastor and C. Tamagnini (Eds), Numerical Modelling in Geomechanics, Revue Française du génie civil, Vol. 6, 2002, Hermes-Lavoisier, Paris 2002.Google Scholar
  18. J. Peraire, M. Vandati, K. Morgan and O. C. Zienkiewicz, “Adaptive remeshing for compressible flow computations”, J. Comp. Phys., 72, 449–466, 1987.CrossRefMATHGoogle Scholar
  19. I. Vardoulakis and J. Sulem, Bifurcation Analysis in Geomechanics, Blakie academic & professional, 1995.Google Scholar
  20. O. C. Zienkiewicz, C. T. Chang and P. Bettess. Drained, undrained, consolidating dynamic behaviour assumptions in soils. Geotechnique 30, 385–395, 1980.CrossRefGoogle Scholar
  21. O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, D. K. Paul and T. Shiomi. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems Proc. R. Soc. Lond. A 429, 285–309, 1990.CrossRefMATHGoogle Scholar
  22. O. C. Zienkiewicz, Y. M. Xie, B. A. Schrefler, A. Ledesma and Bicanic. N. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems. Proc. R. Soc. Lond. A 429, 311–321, 1990.CrossRefMATHGoogle Scholar
  23. O. C. Zienkiewicz, A. H. C. Chan, M. Pastor, B. Schrefler and T. Shiomi, Computational Geomechanics, J. Wiley and Sons, 2000.Google Scholar
  24. O. C. Zienkiewicz, M. Huang and M. Pastor. “Localization problems in plasticity using finite elements with adaptive remeshing”, Int. J. Num. Anal. Meth. Geomechs. 19, 127–148, 1995.CrossRefMATHGoogle Scholar
  25. O. C. Zienkiewicz and T. Shiomi. Dynamic behaviour of saturated porous media: The generalised Biot formulation and its numerical solution. Int. J. Num. Anal. Meth. Geomech., 8, 71–96, 1984.CrossRefMATHMathSciNetGoogle Scholar
  26. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method (4th. edition), Vol. 2, McGraw-Hill, 1991.Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • M. Pastor
    • 1
    • 2
  • J. A. Fernandez Merodo
    • 1
    • 2
  • E. Gonzalez
    • 1
    • 2
  • P. Mira
    • 1
    • 2
  • T. Li
    • 3
  • X. Liu
    • 3
  1. 1.Centro de Estudios y Experimentatión de Obras PúblicasMadridSpain
  2. 2.M2i (Math. Model. Eng. Group), Department of Applied Mathematics, ETS de Ingenieros de CaminosUPM MadridSpain
  3. 3.Hohai UniversityChina

Personalised recommendations