Surfactant Effects on Mass Transfer in Liquid-Liquid Systems

  • M. Alcina Mendes
Part of the International Centre for Mechanical Sciences book series (CISM, volume 463)


This paper reviews the work done by the author and co-workers on the effect of surfactants on mass transfer in binary and ternary liquid-liquid systems. A Schlieren optical apparatus has been used to visualise the selected organic-aqueous interfaces during the mass transfer process, when the aqueous phase was “clean” or “contaminated” by soluble ionic and non-ionic surfactants. Molar fluxes, in the same liquid-liquid systems, have been measured with a Mach-Zehnder interferometer. Results obtained in the laboratory and under microgravity conditions are included. The most significant finding is that the addition of some surfactants to the partially miscible binary liquid-liquid systems investigated can induce or increase interfacial convection which enhances the initial mass transfer rates in comparison with values predicted by Fick’ s law. This effect is of great relevance to industrial processes where surfactants may be used advantageously to manipulate interfacial stability and particularly in space applications, where it may be exploited to increase mass transfer in compensation for the lack of gravitational convection effects.


Interfacial Tension Mass Transfer Rate Mass Transfer Process Marangoni Convection Schlieren Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agble, D. (1998). Interfacial Mass Transfer in Binary Liquid-Liquid Systems with Added Surfactants. PhD Thesis, Imperial College, University of London.Google Scholar
  2. Agble, D., and Mendes-Tatsis, M. A. (1997). Surfactant Induced Marangoni Convection under Micro-gravity. In Proceedings of Joint Xth European and Vith Russian Symposium on Physical Sciences in Microgravity ( St Petersburg, Russia ), 108–117.Google Scholar
  3. Agble, D., and Mendes-Tatsis, M. A. (2000). The effect of surfactants on interfacial mass transfer in binary liquid-liquid systems. Int. J. Heat & Mass Transfer, 43: 1025–1034.CrossRefMATHGoogle Scholar
  4. Agble, D., and Mendes-Tatsis, M. A. (2001). The prediction of Marangoni convection in binary liquid-liquid systems with added surfactants. Int. J. Heat & Mass Transfer, 44: 1439–1449.CrossRefMATHGoogle Scholar
  5. Aunins A H, Browne E P, Hatton T A. (1993). Interfacial Transport Resistances at Surfactant-Laden Interfaces, In Proceedings of the International Solvent Extraction Conference 1993, York, United Kingdom, 1704–1711.Google Scholar
  6. Bakker C. A. P., van Buytenen P. M., and Beek W. J. (1966). Interfacial Phenomena and Mass Transfer, Chemical Engineering Science 21: 1039–1046.CrossRefGoogle Scholar
  7. Bakker C. A. P., Fentener van Vlissingen F. H., and Beek W. J. (1967). The Influence of the Driving Force in Liquid-Liquid Extraction–A Study of Mass Transfer With and Without Interfacial Turbulence Under Well Defined Conditions. Chemical Engineering Science 22: 1349–1355.CrossRefGoogle Scholar
  8. Bennett D. E., Gallardo B. S, and Abbott N. L. (1996). Dispensing Surfactants from Electrodes: Marangoni Phenomenon at the Surface of Aqueous Solutions of (11 Ferrocenylundecyl) trimethyl ammonium Bromide. Journal of the American Chemical Society 118: 6499–6505.CrossRefGoogle Scholar
  9. Berg, J.C. (1972). Interfacial Phenomena in Fluid Phase Separation Processes. In Recent Developments in Separation Science, 2, CRC Press, 1–29Google Scholar
  10. Berg, J. C., and Morig, C. R. (1969). Density Effects in Interfacial Convection. Chemical Engineering Science, 24: 937–945.CrossRefGoogle Scholar
  11. Blokker, P.C. (1957). On mass transfer across liquid/liquid interfaces in systems with and with out surface active agents. Proc. 2nd International Congress of Surface Activity, 1: 503–510.Google Scholar
  12. Brodkorb, M. J. and Slater, M. J. (2001). Multicomponent and Contamination Effects on Mass Transfer in a Liquid-Liquid Extraction Rotating Disc Contactor Trans. IChemE, 79 A: 335–346.Google Scholar
  13. Caldwell, C. S., Hall J. R., and Babb A. L. (1957). Mach-Zehnder interferometer for diffusion measurements in volatile liquid. Review of Scientific Instruments 28: 816–827.CrossRefADSGoogle Scholar
  14. Chu X. L., Velarde M. G. (1989). Transverse and Longitudinal Waves Induced and Sustained by Surfactant Gradients at Liquid-Liquid Interfaces. Journal of Colloid and Interface Science 131 (2): 471–484CrossRefGoogle Scholar
  15. Crank, J. (1975). The Mathematics of Diffusion, Oxford University Press, London.Google Scholar
  16. Davies, J. T., Wiggill, J. B. (1960). Diffusion Across the Oil/Water Interface. In Proceedings of the Royal Society (London), A255: 277–291.Google Scholar
  17. Fick, A.E, (1855). On Liquid Diffusion, Philosophical Magazine 10: 30–39.Google Scholar
  18. Godfrey, J.C. and Slater, M.J. (1994). Liquid-Liquid Extraction Equipment,John Wiley & Sons.Google Scholar
  19. Gouda J.H., and Joos P. (1975). Application of Longitudinal Wave Theory to Describe Interfacial Instability. Chemical Engineering Science 30: 521–528.CrossRefGoogle Scholar
  20. Hennenberg M., Bisch P. M., Vignes-Adler M., Sanfeld, A. (1979). Mass Transfer, Marangoni and Instability of Interfacial Longitudinal Waves I. Diffusional Exchanges. Journal of Colloid and Interface Science 69 (1): 128–137CrossRefGoogle Scholar
  21. Hennenberg M., Bisch P. M., Vignes-Adler M., Sanfeld A. (1980). Mass Transfer, Marangoni and Instability of Interfacial Longitudinal Waves I. Diffusional Exchanges and Adsorption-Desorption Processes. Journal of Colloid and Interface Science 74 (2), 495–508.CrossRefGoogle Scholar
  22. Hennenberg M., Sanfeld A., Bisch P. M. (1981). Adsorption-Desorption Barrier, Diffusional Exchanges and Surface Instabilities of Longitudinal Waves for Aperiodic Regimes. Journal of the American Institute of Chemical Engineers 27 (6): 1002–100.MathSciNetCrossRefGoogle Scholar
  23. Komasawa, I., Saito, T., and Otake, T. (1972). Mass transfer across the liquid-liquid interface. Interfacial turbulence and its elimination. Inst. Chem. Eng., 12, 2, 345–351.Google Scholar
  24. Lewis, J. B., and Pratt, H. R. C. (1953). Oscillating Droplets, Nature, 171: 1155–1156.CrossRefADSGoogle Scholar
  25. Linde H. and Schwarz E. (1964). Uber groBraumige Rollzellen der freien Grenzflachenkonevktion. Monatsberitche Deutsche Akademie der Wissenschaften zu Berlin 7: 330–338.Google Scholar
  26. Lye G.J., and Stuckey D. C. (2001). Extraction of Erythromycin-A Using Colloidal Liquid Aphrons: Part II. Mass Transfer Kinetics. Chemical Engineering Science 56: 97–108.CrossRefGoogle Scholar
  27. Lyford P.A., Shallcross D. C., Grieser F., Pratt H.R.C. (1998). The Marangoni Effect and Enhanced Oil Recovery Part 2. Interfacial Tension and Drop Instability. Canadian Journal of Chemical Engineering 76: 198–217.Google Scholar
  28. Marangoni, C. G. M. (1865). Sull Expansiome dell Goccie di un Liquido Galleggianti sulla Superficie di Altro Liquido. Tipografia del Fratelli Fusi, Pavia.Google Scholar
  29. Marangoni, C. G. M. (1871). Ueber die Ausbreitung der Tropfen einer Flussigkeit auf der Oberflache einer anderen, Ann. Phys. Chem. (Poggendorff), 143 (7): 337–354CrossRefADSGoogle Scholar
  30. Maroudas N. G. and Sawistowski H. (1964). Simultaneous Transfer of Two Solutes Across Liquid-Liquid Interfaces. Chemical Engineering Science 19: 919–931.CrossRefGoogle Scholar
  31. Mendes-Tatsis M.A. (2000). Enhanced Mass Transfer in Liquid-Liquid Systems. Proceedings Int. Symposium on Multiphase Flow and Transport Phenomena, ICHMT- MFTP-2000, 5–10 November 2000, Antalya, Turkey, Keynote Lecture 12–01, Ed. David Moalem Maron.Google Scholar
  32. Mendes-Tatsis, M. A., and Perez de Ortiz, E. S. (1992). Spontaneous Interfacial Convection in Liquid-Liquid Binary Systems Under Microgravity, Proceedings of the Royal Society London, A438, 389–396.CrossRefADSGoogle Scholar
  33. Mudge, L. K., and Heideger, W. J. (1970). The Effect of Surface Active Agents on Liquid-Liquid Mass Transfer Rates. Journal of the American Institute of Chemical Engineers, 16 (4): 602–608.CrossRefGoogle Scholar
  34. Nakache E., Dupeyrat M., Vignes-Adler M. (1983). Experimental and Theoretical Study of an Interfacial Instability at Some Oil-Water Interfaces Involving a Surface-Active Agent: I. Physicochemical Description and Outlines for a Theoretical Approach. Journal of Colloid and Interface Science. 94 (1): 120–127.CrossRefGoogle Scholar
  35. Nakache E., and Raharimalala S. (1988). Interfacial Convection Driven by Surfactant Compounds at Liquid Interfaces: Characterisation by a Solutal Marangoni Number. In: Velarde M G, editor. Physicochemical Hydrodynamics: Interfacial Phenomena. Plenum Press, New York and LondonGoogle Scholar
  36. Nakälie:6Raharimalala S., Vignes-Adler M. (1991). Marangoni effect in Liquid-Liquid Extraction with Surface Active Agent. In: G F Hewitt, F. Mayinger and J R Riznic, editors. Phase-Interface Phenomena in Multiphase Flow,Hemisphere Publications Corporation, London, 573–582.Google Scholar
  37. Orell A. and Westwater J.W. (1962). Spontaneous Interfacial Cellular Convection Accompanying Mass Transfer: Ethylene Glycol–Acetic Acid–Ethyl Acetate. Journal of the American Institute of Chemical Engineers 8 (3): 350–356.CrossRefGoogle Scholar
  38. Perez de Ortiz, E. S. (1991). Marangoni Phenomena. In Science and Practice of Liquid-Liquid Extraction, Ed. Thornton, J.D., Clarendon Press.Google Scholar
  39. Perez de Ortiz, E. S., and Sawistowski, H. (1973). Interfacial Stability of Binary Liquid-Liquid Systems–I. Stability Analysis, Chemical Engineering Science 28: 2051–2061.CrossRefGoogle Scholar
  40. Perez de Ortiz E. S. and Sawistowski H. (1973). Interfacial Stability of Binary Liquid-Liquid Systems-II. Stability Behaviour of Selected Systems. Chemical Engineering Science 28: 2063–2069.CrossRefGoogle Scholar
  41. Pursell, M. R. and Mendes M. A. (2003) Manuscript under preparation.Google Scholar
  42. Pursell, M. R., Mendes-Tatsis M. A., and Stuckey D. C. (2000). The Effect of Surfactants During Solvent Extraction of Erythromycin-A from Buffer and Filtered Fermentation Broth, Solvent Extraction for the 21st Century (Proceedings of ISEC’99) Eds: M. Cox, M. Hidalgo and M. Valiente, Society of Chemical Industry, London, 155–161.Google Scholar
  43. Pursell, M. R., Mendes-Tatsis M. A., and Stuckey D. C. (2003a). Co-Extraction During Reactive Extraction of Phenylalanine using Aliquat 336–Modelling Extraction Equilibrium, Biotechnology and Bioengineering 82 (5): 533–542.CrossRefGoogle Scholar
  44. Pursell, M. R., Mendes-Tatsis M. A., and Stuckey D. C. (2003b). Co-Extraction During Reactive Extraction of Phenylalanine using Aliquat 336: Interfacial Mass Transfer, Biotechnology Progress 19: 469–476.CrossRefGoogle Scholar
  45. Pursell, M. R., Mendes-Tatsis M. A., and Stuckey D. C. (2003c). The Effect of Fermentation Broth and Biosurfactants on Mass Transfer During Liquid-Liquid Extraction accepted for publication, Biotechnology and Bioengineering.Google Scholar
  46. Sanfeld A. and Steinchen A. (1984). Chemical Instabilities In: Nicolis G, Baras F, editors. NATO Adv. Science Institute, Series C, D, 199.Google Scholar
  47. Sawistowski, H. (1971). Interfacial Phenomena. In Recent Advances in Liquid-Liquid Extraction, Ed. Hanson, C., Pergamon Press, 293–365.Google Scholar
  48. Sherwood T. K., Wei J. C. (1957). Interfacial Phenomena in Liquid Extraction. Industrial and Engineering Chemistry 49 (6): 1030–1034.CrossRefGoogle Scholar
  49. Slavchev, S. and Mendes, M. A. (2003). Marangoni Instability in Binary Liquid-Liquid Systems. Submitted to Int. J. Heat & Mass Transfer.Google Scholar
  50. Slavchev, S., Kalitzova-Kurteva, P. and Mendes, M. A. (2003). Manuscript under preparation.Google Scholar
  51. Sörensen T.S. (1979). Instabilities induced by Mass Transfer, Low Surface Tension and Gravity at Isothermal and Deformable Fluid Interfaces In Lecture Notes in Physics: Dynamics and Instability of Fluid Interfaces: Springer-Verlag, 105: 1–74.Google Scholar
  52. Stemling C. V., and Scriven L. E. (1959). Interfacial Turbulence Hydrodynamic Instability and the Marangoni Effect, Journal of the American Institute of Chemical Engineers, 5 (4): 514–523.CrossRefGoogle Scholar
  53. Thompson, J. (1855). On Certain Curious Motions Observable at the Surfaces of Wine and Other Alcoholic Liquors, Philosophical Magazine, 10: 330–335.Google Scholar
  54. Van Voorst Vader F. (1960). Adsorption of Detergents at the Liquid-Liquid Interface. Part 1. Transactions of the Faraday Society 56: 1067–1077.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • M. Alcina Mendes
    • 1
  1. 1.Department of Chemical Engineering and Chemical TechnologyImperial College LondonUK

Personalised recommendations