Advertisement

Modelling Methodologies for Convection-Diffusion Phase-Change Problems

  • F. Stella
  • M. Giangi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 449)

Abstract

In recent years numerical simulation of phase-change problems have attracted much interest due to their significance for several technological process. Melting and solidification are typical examples of phase change met in the metallurgical industries or crystal growth technology. These processes involve complex phenomena of mass and heat transfer that determines the quality of the solid phase.

Keywords

Marangoni Number Thermocapillary Convection Interface Position Interface Shape Marangoni Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbaschian, R., de Groh III, H.C, Leonardi, E., de Vahl Davis, G., Coriell, S., and Cambon, G., 2001. ‘Final report for the shuttle flight experiment on USMP-4: In Situ Monitoring of Crystal Growth Using MEPHISTO’, NASA Technical Publication, NASA/TP-2001–210825.Google Scholar
  2. Banaszek, J., Rebow, M. and Kowalewski, T. A. (1998). Fixed grid finite element analysis of solidification, In de Vahl Davis, G. and Leonardi, E., eds., Advances in computational heat transfer CHT-97, 471–478, Cesme, Belgell House.Google Scholar
  3. Bennon, W. D. and Incropera, F. P. (1987). A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems I, Model formulation, Int. J. of Heat and Mass Transfer 30, 2161–2170.CrossRefMATHGoogle Scholar
  4. Bennon, W. D. and Incropera, F. P. (1988). Numerical analysis of binary solid-liquid phase change using a continuum model. Num. Heat Transfer 13, 207–216.Google Scholar
  5. Bertrand, O., Binet, B., Combeau, H., Coutier, S., Dellanoy, Y., Gobin, D. Lacroix, M., Lequere, P., Medale, M., Mencinger, J., Sadat, H. and Veira, G. (1999). Melting driven by natural convection. A comparison exercise: first results, Int. J. Thermal Sci. 38, 5–26.CrossRefGoogle Scholar
  6. Brent, A. D., Voller, V. R. and Reid, K. J. (1988). Enthalpy-porosity technique for modelling convection-diffusion phase-change: application to the melting of a pure metal, Num. Heat Transfer 13, 297–318.Google Scholar
  7. Buell, C. and Shuck, F., 1970. Diffusion in the liquid Bi-Sn system, Metallurgical Transactions, 1, 1875–1880.CrossRefGoogle Scholar
  8. Caginalp, G. and Socolovski, E. A., (1991). J. Comput. Phys., 95, 85.MathSciNetCrossRefMATHGoogle Scholar
  9. Caginalp, G., (1989). Phys. Rev. A. 39, 11, 5887.MathSciNetCrossRefMATHGoogle Scholar
  10. Caginalp, G. and Chen X. (1992). On the evolution of Phase Boundaries, Spring Verlag New York.Google Scholar
  11. Chen, P.Y.P., Timchenko, V., Leonardi, E., de Vahl Davis, G. and de Groh III, H.C., 1998. A numerical study of directional solidification and melting in microgravity, HTD-Vol. 361–3/PID-Vol. 3. Proc. Of ASME Heat Transfer Divn., HTD-Vol.361–3/PID-Vol.3, Proc. of the ASME Heat Transfer Division–Volume 3, R.A. Nelson Jr., L.W. Swanson, M.V.A. Bianchi, C. Camci (eds), ASME, New York, 75–83.Google Scholar
  12. CFX-4.2:Solver, 1997. Harwell Laboratory, Didcot, Oxfordshire OX11 ORA, U.K.Google Scholar
  13. Crank, J. (1984). Free and moving boundary problems. Oxford Science Publications.Google Scholar
  14. Dantzig, J. (1989). Modelling liquid-solid phase change with melt convection, Int. J. Num. Meth. In Eng. 28, 1769–1785.Google Scholar
  15. Fabbri, M. and Voller, V. R. (1997). The phase-field method in the sharp interface limit: a comparison between model potential. J. Comp. Physics 130, 256–265.CrossRefMATHGoogle Scholar
  16. Gau, C. Viskanta, R. (1986), Melting and solidification of a pure metal on a vertical wall, Transaction of the ASME 108, 174–181.CrossRefGoogle Scholar
  17. Garling, D. K. (1980). Finite element analysis of convective heat transfer problems with change of phase, Computer Meth. Fluids, 257–284.Google Scholar
  18. Giangi, M., Stella, F. and Kowalewski, T. A. (1999). Phase change with free convection: fixed grid simulation, Comp. Visual. Sci. 2, 123–130.CrossRefMATHGoogle Scholar
  19. Giangi, M., Stella, F. (1999). Analysis of natural convection during solidification of a pure metal, Int. J. Comp. Fluid Dynamics, 11, 341–349.CrossRefMATHGoogle Scholar
  20. Giangi, M., Stella, F., Leonardi E. and de Vahl Davis G. (2002). A numerical study of solidification in the presence of a free surface under microgravity condition, Num. Heat Transfer: Part. A, 41, 579–595.CrossRefGoogle Scholar
  21. Golub G. and Van Loan C. (1990). Matrix computations, Johns Hopkins University Press, Baltimore, MD.Google Scholar
  22. Guj, G. and Stella, F. (1988). Numerical Solution of High-Re Recirculating Flows in Vorticity-Velocity Form, Int. J. Num. Meth. in Fluids, 8, 405–416.Google Scholar
  23. Hirsch C. (1983). Numerical computation of internal and external flows, Spring Verlag New-York, 1, Fondamental of numerical discretization.Google Scholar
  24. Kobayashi R. (1993), Physica D., 63, 410.CrossRefMATHGoogle Scholar
  25. Kobayashi, R. (1994), Exp. Math. 3, 59.CrossRefMATHGoogle Scholar
  26. Kowalewski, T. A. and Rebow, M. (1998). An experimental benchmark for freezing water in the cubic cavity, In de Vahl Davis, G. and Leonardi, E., eds., Advances in Computational Heat Transfer CHT-97, 149–156, Cesme, Belgell House.Google Scholar
  27. Laouadi, A., Lacroix, M. and Galanis, N., 1998. A numerical method for the treatment of discontinuous thermal conductivity in phase change problems, International Journal of Numerical Methods for Heat and Fluid Flow, 8, 265–287.CrossRefMATHGoogle Scholar
  28. Lee, Y. and Korpela S.A. (1983). Multicellular natural convection in a vertical slot, J Fluid Mech., 126, 91–121.CrossRefMATHGoogle Scholar
  29. Morgan, K. (1981). A numerical analysis of freezing and melting with convection, Comp. Meth. Applied in Eng. 28, 275–284.CrossRefGoogle Scholar
  30. Niwa, K., Shimoji, M., Kado, S., Watanabe, Y. and Yokokawa, T., 1957. Studies of diffusion in molten metals, AIME Tran., 209, 96–101.Google Scholar
  31. Ralston A. and Rabinowitz P. (1978). A first course in numerical analysis, McGraw-Hill International Editions, Singapore.MATHGoogle Scholar
  32. Raw, W.Y. and Lee, S.L., 1991. Application of weighting function scheme on convection-conduction phase-change problems, Int. Heat and Mass Transfer, 34, 1503–1513.CrossRefGoogle Scholar
  33. Rouzaud A., Favier J.J. and Thevenard D., 1988. A space instrument for fundamental materials science problems: the MEPHISTO program, Adv. Space Res., Vol. 8, No. 12, 49–59.CrossRefGoogle Scholar
  34. Richtmyer, R. D. and Morton, K. W. (1967). Difference methods for initial value problems. Interscience, New York.MATHGoogle Scholar
  35. Saad Y. and Schultz M.H. (1986). Gmres: A generalized minimum residual algorithm for solving non-symmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856–869.MathSciNetCrossRefMATHGoogle Scholar
  36. Scheudergger, A. E. (1963). The physics of flow trough porous media, Oxford University Press, London.Google Scholar
  37. Shyy W., Udaykumar H.S., Madhukar M.Rao, Smith R.W. (1996). Computational fluid dynamics with moving boundaries, Taylor & Francis, London.Google Scholar
  38. Slattery, J. C. (1978) Momentum Energy and Mass Transfer in Continua, Krieger, New York.Google Scholar
  39. Smith, V.G., Tiller, W.A. and Rutter, J.W., 1955. A mathematical analysis of solute redistribution during solidification. Canadian J. of Physics, 33, 723–743.CrossRefGoogle Scholar
  40. Sonneveld P. (1989). CGS, A fast lanczos type type solver for nonsymmetric linear systems, SIAM. Sci. Stat. Comput., 10, 36–52.MathSciNetCrossRefMATHGoogle Scholar
  41. Stella, F. and Giangi, M. (2000). Melting of a Pure Metal on a Vertical Wall: Numerical Simulation, Numerical Heat Transfer: Part. A, 38, 2, 193–208.CrossRefGoogle Scholar
  42. Stella F. and Bucchignani E. (1996). True transient vorticity-velocity method using preconditioned BiCGSTAB, Numerical Heat Transfer: Part. B, 30, 315–339.CrossRefGoogle Scholar
  43. Tacke, K., Discretization of the explicit enthalpy method for planar phase change, 1985. Int. J. Num. Methods in Eng., 21, 543–554.CrossRefMATHGoogle Scholar
  44. Timchenko, V., Chen, P.Y.P., de Vahl Davis, G. and Leonardi, E., 1998. Directional Solidification in Microgravity, Heat Transfer 98, J.S. Lee (ed.), Taylor & Francis, 241–246.Google Scholar
  45. Timchenko, V., Chen, P.Y.P., de Vahl Davis, G., Leonardi, E and Abbaschian, R., 2000. A computational study of transient plane front solidification of alloys in a Bridgman apparatus under microgravity conditions, Int. J. Heat and Mass Transfer, 43, 963–980.CrossRefMATHGoogle Scholar
  46. Timchenko, V., Chen, P.Y.P., de Vahl Davis, G., Leonardi, E and Abbaschian, R., 2001. A numerical study of the MEPHISTO experiment, CHT’01 Advances in Computational Heat Transfer II, G. de Vahl Davis and E. Leonardi (eds), Begell House Inc., New York, 1089–1096.Google Scholar
  47. Unverdi, S. O. and Tryggvason, G. (1992). A front-tracking method for viscous incompressible, multi-fluid flows. J. Comp. Physics 100, 25–37.CrossRefMATHGoogle Scholar
  48. Van De Worst H. (1992). A fast and smoothly converging variant of Bi-Cgstab for the solution of non-symmetric linear sistems, SIAM J. Sci. Stat. Comput., 132, 631–644.Google Scholar
  49. Viswanath, R. and Jaluria, Y. (1993). A comparison of different solution methodologies for melting and solidification problems in enclosures, Num. Heat Transfer, Part B, 24, 77–105.Google Scholar
  50. Voller, V. R., Cross, M. and Markatos, N. C. (1987). An enthalpy method for convection-diffusion phase change. Mt. J. Num. Meth. Eng. 24, 271–284.CrossRefMATHGoogle Scholar
  51. Voller, V. R., Swaminathan C.R. (1993). Treatment of discontinuous thermal conductivity in control volume solutions of phase change problems. Numerical Heat Transfer, Part B, 24, 161–180.Google Scholar
  52. Voller, V.R., Fabbri, M. (1995). Numerical solution of plane-front solidification with kinetic undercooling, Numerical Heat Transfer, Part B, 32, 467–486.Google Scholar
  53. Voller, V.R., Brent, A.D. and Prakash, C., 1989. The modelling of heat, mass and solute transport in solidification systems. Int. J. Heat Mass Transfer, 32, 1719–1731.CrossRefGoogle Scholar
  54. Wang S.L. et al. (1993), Physica D. 69, 189.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • F. Stella
    • 1
  • M. Giangi
    • 1
  1. 1.Dipartimento di Meccanica e AeronauticaUniversità degli studi di Roma “La Sapienza”RomeItaly

Personalised recommendations