Experimental Methods for Quantitative Analysis of Thermally Driven Flows

  • Tomasz A. Kowalewski
Part of the International Centre for Mechanical Sciences book series (CISM, volume 449)


Properly designed validation experiments are necessary to establish a satisfactory level of confidence in simulation algorithms. In this review recent achievements in the measurement techniques used for monitoring macroscopic flow field features are presented. In particular, optical and electro-optical methods, for example thermography, tomography or particle image velocimetry, are reviewed and their application to simple solidification experiments demonstrated. Computer supported experimentation combined with digital data recording and processing allows for the acquisition of a considerable amount of information on flow structures. This data can be used to establish experimental benchmarks for the validation of numerical models employed in solidification problems. Three experimental benchmarks based on water freezing in small containers are proposed to model flow configurations typically associated with crystal growth and mould-filling processes.


Liquid Crystal Particle Image Velocimetry Natural Convection Mushy Zone Light Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abegg, C., de Vahl Davis, G., Hiller, W.J., Koch, St., Kowalewski, T.A., Leonardi, E., Yeoh, G.H. (1994). Experimental and numerical study of three-dimensional natural convection and freezing in water. Proc. of 10th Int. Heat Transfer Conf, edt. G.F. Hewitt, Ichem 4: 1–6.Google Scholar
  2. Andres, N., Arroyo, M.P., Quantilla, M. (1999). Interferometric techniques for measuring flow velocity fields. Machine Graphics amp; Vision 8: 625–636.Google Scholar
  3. Banaszek, J., Jaluria, Y., Kowalewski, T.A., Rebow, M. (1999). Semi-implicit FEM analysis of natural convection in freezing water. Num. Heat Transfer Part A: 36: 449–472.CrossRefGoogle Scholar
  4. Banaszek, J., Kowalewski, T. A., Furmanski, P., Rebow, M., Cybulski, A., Wisniewski, T.S. (2000). Natural convection with phase change in one-component and binary systems. IPPT Reports 3/2000, IPPT PAN Warszawa.Google Scholar
  5. Bartels-Lehnhoff, H.H.(1991). Erfassung dreidimensionaler Bahnlinien and Geschwindigkeitsfelder mittels automatischer Bildverarbeitung. Ph.D. Thesis in Mitteilungen aus dem MPI 101, Göttingen.Google Scholar
  6. Beckermann, C., Viskanta, R. (1089). Effect of solid subcooling on natural convection of a pure metal. J. Heat Transfer (ASME) 111: 416–424.CrossRefGoogle Scholar
  7. Bovik, A. (2000). Handbook of Image and Video Processing. Academic Press, San Diego.MATHGoogle Scholar
  8. Brito, D., Nataf, H.C., Cardin, Ph., Aubert, J., Masson, J.P.(2001). Ultrasonic Doppler velocimeter in liquid gallium. Exp. in Fluids 31:653–663.Google Scholar
  9. Carlomagno G.M. (1993). Heat transfer measurements by means of infrared thermography, in Measurement Techniques. VKI Lect. Series 1993–05, Rhode-Saint-Genese. 1–114.Google Scholar
  10. Chang, Y.J., Hsieh, Y.T., Chen, Y.M. (1998). Flow visualisation during a water freezing process by holographic interferometry. In 8 th Int. Symp. on Flow Visualization. 114: 1–8.Google Scholar
  11. Cybulski A., Michalek T., T.A. Kowalewski, M. Kowalczyk, M. Sokolnicki (2002). Experimental and numerical simulation of mould filling process, Proceedings of Int. Conference Heat 2002, Baranow S. June 2002. 267–272.Google Scholar
  12. Dabiri, D., Gharib, M. (1991). Digital particle image thermometry: The method and implementation. Exp. in Fluids 97: 77–86.Google Scholar
  13. Emrich, R.J. (1981). Methods of Experimental Physics. Vol. 18 Fluid Dynamics. Academic Press, New York.Google Scholar
  14. Englemann, D., Garbe, Ch., Stöhr, M., Geißler, P., Hering, F., Jähne, B. (1988). Stereo particle tracking, in Proc. 8` h Int. Symp. Flow Visualization. 240: 1–8.Google Scholar
  15. Fomin, N.A. (1998). Speckle Photography for Fluid Mechanics Measurements. Springer Verlag, BerlinHeidelberg-New York.CrossRefMATHGoogle Scholar
  16. Gau, C., Viskanta, R. (1986). Melting and solidification of a pure metal on a vertical wall. J. Heat Transfer (ASME) 108: 174–181.CrossRefGoogle Scholar
  17. Gelfgat, A.Yu, Bar-Yoseph, P.Z., Solan, A., Kowalewski T.A. (1999). An axisymmetry breaking instability of axially symmetric natural convection Int. J. Trans. Phenomena 1: 173–190.Google Scholar
  18. Giangi, M., Kowalewski, T.A., Stella, F., Leonardi, E. (2000). Natural convection during ice formation: numerical simulation vs. experimental results. Comp. Assisted Mech. and Eng. Scs. 7: 321–342.MATHGoogle Scholar
  19. Giangi, M., Stella, F., Kowalewski, T.A. (1999). Phase-change problems with free convection: fixed grid simulation. Comp. amp; Vis. in Scs. 2:123–130.Google Scholar
  20. Gobin, D., Le Quere, P. (2000). Melting from an isothermal vertical wall. Synthesis of numerical comparison exercise. Comp. Assisted Mech. and Eng. Scs. 7: 289–306.MATHGoogle Scholar
  21. Goldstein, R.J. (1983). Fluid Mechanics Measurements. Hemisphere, Pub. Corp., Washington.Google Scholar
  22. Grant, I., Thompson, B.J.(edts). (1994). Selected Papers on Particle Image Velocimetry. SPIE Milestone Series MS99, Optical Eng. Press, Bellingham.Google Scholar
  23. Groh III de, H.C. (1994). Interface shape and convection during solidification and melting of succinonitrile. NASA Tech. Memorandum 106487.Google Scholar
  24. Gui, L., Merzkirch, W. (1996). A method of tracking ensembles of particle images. Exp. in Fluids 21:465–468.Google Scholar
  25. Gui, L., Merzkirch, W. (2000). Comparative study of the MQD method and several correlation-based PIV evaluation algorithms. Exp. in Fluids 28:36–44.Google Scholar
  26. Hay, J.K., Hollingsworth, D.K. (1996). A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals. Exp. Thermal Fluid Scs, 12: 1–12CrossRefGoogle Scholar
  27. Hiller, W., Kowalewski, T.A. (1987). Simultaneous measurement of the temperature and velocity fields in thermal convective flows. In Flow Visualization IV, Ed. Claude Veret, Hemisphere, Paris. 617–622.Google Scholar
  28. Hiller, W.J., Koch, St., Kowalewski, T.A. (1988). Simultane Erfassung von Temperatur-and Geschwindigkeitsfeldern in einer thermischen Konvektionsströmung mit ungekapselten Flüssigkristalltracern. In: 2D-MeßtechnikDGLR-Workshop, Markdorf, DGLR-Bericht 88–04, DGLR Bonn.31–39.Google Scholar
  29. Hiller, W.J., Koch, St., Kowalewski, T.A. (1989). Three-dimensional structures in laminar natural convection in a cube enclosure. Exp. Therm. and Fluid Sci. 2: 34–44.CrossRefGoogle Scholar
  30. Hiller, W.J., Koch, St., Kowalewski, T.A., de Vahl Davis, G., Behnia, M. (1990). Experimental and numerical investigation of natural convection in a cube with two heated side walls, Proc. Of IUTAM Symposium, Cambridge UK, Aug. 13–18, 1989, ( Edits. H.K. Moffat amp; A. Tsinober ), CUP. 717–726.Google Scholar
  31. Hiller, W.J., Koch, St., Kowalewski, T.A., Mitgau, P., Range, K. (1992). Visualization of 3-D natural convection. Proceedings of The Sixth International Symposium on Flow Visualization, Eds. Tanida Y. amp; Miyashiro H. Springer-Verlag. 674–678.Google Scholar
  32. Hiller, W.J., Koch, St., Kowalewski, T.A., Stella, F. (1993). Onset of natural convection in a cube. Int. J. Heat Mass Transfer 36: 3251–3263.CrossRefGoogle Scholar
  33. Ibrahim, S., Green, R.G., Evans, K., Dutton K. (2000). Flow visualisation using optical tomography. In Proc. 9th Int. Symp. Flow Visualization. 140: 1–8.Google Scholar
  34. Incropera, F.P. (1997). Experimental methods for characterizing transport phenomena occurring during solidification of multi-constituent materials. In Proc. Exp. Heat Transfer, Fluid Mech. and Thermodynamics, Edizioni ETS. 1855–1865.Google Scholar
  35. Jähne, B. (1997). Digital Image Processing. Springer Verlag, Berlin-Heidelberg-New York.MATHGoogle Scholar
  36. Koch, St. (1993). Berührungslose Messung von Temperatur and Geschwindigkeit in freier Konvektion,Ph.D. Thesis in Mitteilungen aus dem MPI 108, Göttingen.Google Scholar
  37. Kowalewski, T. A., Cybulski, A. (1997). Natural convection with phase change. IPPT Reports 8/97, IPPT PAN Warszawa.Google Scholar
  38. Kowalewski, T. A., Cybulski, A. (1996). Experimental and numerical investigations of natural convection in freezing water. Int. Conf. on Heat Transfer with Change of Phase, Kielce. In Mechanics 61 /2: 7–16.Google Scholar
  39. Kowalewski, T.A. (1998). Experimental validation of numerical codes in thermally driven flows. In Advances in Computational Heat Transfer, G. de Vahl Davis, E. Leonardi (eds), Hegel House Inc., New York. 1–15.Google Scholar
  40. Kowalewski, T.A., Cybulski, A., Sobiecki, T. (2001). Experimental model for casting problems. In Computational Methods and Experimental Measurements, Eds. Y. V. Esteve, G.M. Carlomagno, C.A. Brebia, WIT Press, Southampton. 179–188.Google Scholar
  41. Kowalewski, T.A., Rebow,M. (1999). Freezing of water in the differentially heated cubic cavity. Int. J. Comp. Fluid Dyn. 11: 193–210.CrossRefMATHGoogle Scholar
  42. Lehner, M., Mewes, D., Dinglreiter, U., Tauscher, R. (1999). Applied Optical Measurements. Springer Verlag, Berlin-Heidelberg-New York.CrossRefMATHGoogle Scholar
  43. Leonardi, E., Kowalewski, T.A., Timchenko, V., de Vahl Davis, G. (1999). Effect of finite wall conductivity on flow structures in natural convection. Proceedings of the International Conference on Computational Heat and Mass Transfer, Cyprus, eds. A.A. Mohamad amp; I. Sezai, Eastern Mediterranean University Printinghouse. 182–188.Google Scholar
  44. Mayinger, F., Feldmann O. (2001). Optical Measurements, Techniques and Applications. Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  45. McDonough, M.W., Faghri, A. (1994). Experimental and numerical analyses of the natural convection of water through its density maximum in a rectangular enclosure. Int. J. Heat Mass Transfer 37: 783–801.CrossRefGoogle Scholar
  46. Michalek, T., Kowalewski, T.A. (2003). Experimental model of mould filling flow. In Eurotherm 69 Heat and Mass Transfer in Solid-Liquid Phase Change Processes, eds.: B. Sarler, D. GobinGoogle Scholar
  47. Mishima, K., Hibiki, T. (1996). Quantitative limits of thermal and fluid phenomena measurements using neutron attenuation characteristics of materials. Exp. Thermal Fluid Scs. 12: 461–472.CrossRefGoogle Scholar
  48. Mitgau, P.M., Hiller, W.J., Kowalewski, T.A. (1994). Verfolgung von Teilchen in einer dreidimensionalen Strömung. ZAMM 74 (5): T394–396.MATHGoogle Scholar
  49. Müller, G., Neumann, G., Weber, W. (1984). Natural convection in vertical bridgman configurations. J. Crystal growth 70: 78–91.CrossRefGoogle Scholar
  50. Noël, N., Jamgotchian, H., Billa, B. (1997). In situ and real-time observation of the formation and dynamics of a cellular interface in a succinonitrile-0.5%wt acetone alloy directional solidified in a cylinder. J. Crystal growth 181: 117–132.Google Scholar
  51. Noël, N., Zamkotsian, F., Jamgotchian, H., Billa, B. (2000). Optical device dedicated to the nondistructive observation and characterization of the solidification of bulk transparent alloy in situ and real time. Meas. Sci. Technol. 11: 66–73.CrossRefGoogle Scholar
  52. Park, H.G., Dabiri, D., Gharib, M. (2001). Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder. Exp.in Fluids 30: 327–338.CrossRefGoogle Scholar
  53. Pham, A.H., Hua, Y., Gray, N.B. (1999). Eddy current tomography for metal solidification imaging. In 1st World Congress on Industrial Process Tomography, Buxton. 451–458.Google Scholar
  54. Plaskowski, A., Beck, MS., Thorn, R., Dyakowski, T. (1994). Imaging Industrial Flows. IPP, Bristol and Philadelphia.Google Scholar
  55. Praisner, T.J., Sabatino, D.R., Smith, C.R. (2001). Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements. Exp. in Fluids 300:1–10.Google Scholar
  56. Prescott, P.J., Incropera, F.P. (1994). Convection transport phenomena and microsegragation during solidification of a binary metal alloy: Parti amp; 2. J. Heat Transfer (ASME) 116: 735–749.CrossRefGoogle Scholar
  57. Prescott, P.J., Incropera, F.P. (1996). Convection heat and mass transfer in alloy solidification. Adv. in Heat Transfer 28:231–338.Google Scholar
  58. Quónot, G., Pakleza, J., Kowalewski, T.A. (1998). Particle Image Velocimetry with Optical Flow. Exp. in Fluids 25:177–189.Google Scholar
  59. Raffel, M., Willert, C., Kompenhans, J. (1998). Particle Image Velocimetry. Springer Verlag, BerlinHeidelberg-New York.CrossRefGoogle Scholar
  60. Rinkevichius, B.S. (1998). Laser Diagnostics in Fluid Mechanics. Begell House Inc., New York, Wallingford.Google Scholar
  61. Roache, P.J. (1997). Quantification of uncertainty in computational fluid dynamics. Ann. Rev. Fluid Mech. 29: 123–160.MathSciNetCrossRefGoogle Scholar
  62. Rucki Z., Szczepanik Z, Blogowska K. (2002). Measurements of the resistance filed in binary mixture with freezing (in Polish), PW Prace Naukowe-Konferencje, Conference XVIII Zjazd Termodyn., printed by Politechnika Warszawska, 22: 991–1000.Google Scholar
  63. Sabatino, D.R., Praisner, T.J., Smith, C.R. (2000). A high-accuracy calibration technique for thermochromic liquid crystal temperature measurements. Exp. in Fluids 28:497–505.Google Scholar
  64. Sielschott, H. (1997). Measurement of horyzontal flow in a large scale furnace using acoustic vector tomography. Flow Meas. and Instr. 8: 191–197.CrossRefGoogle Scholar
  65. Sirrel, B., Holliday, M., Cambell, J. (1995). The benchmark test 1995. In Proc. of the 7 th Conference on Modelling of Casing, Welding and Advanced Solidification Process, TMS Pub. 915–933.Google Scholar
  66. Soeller, C. (1994). Untersuchung der Konvektionsströmung in von oben gekühlten Behältern mittels tomographischer Speckle-Interferometrie and digitaler Bildverarbeitung. Dissertation, University of Göttingen.Google Scholar
  67. Straley, S.M.J. (1974). Physics of Liquid Crystals. Review of Modern Physics 46 /4: 617–704.CrossRefGoogle Scholar
  68. Takeda, Y. (1999). Ultrasonic Doppler method for velocity profile measurement in fluid dynamics and fluid engineering. Exp. in Fluids 26:177–178.Google Scholar
  69. Van Buren, P.D., Viskanta, R. (1980). Interferometric measurement of heat transfer during melting from a vertical surface. Int. J. Heat Mass Transfer 23: 568–571.CrossRefGoogle Scholar
  70. Viskanta, R. (1988). Heat transfer during melting and solidification of metals. J. Heat Transfer (ASME) 110: 1205–1219.CrossRefGoogle Scholar
  71. Westerweel, J. (1993). Digital Particle Image Velocimetry - Theory and Application. Delft, Delft University Press.Google Scholar
  72. Westerweel, J., Dabiri, D., Gharib, M. (1997). The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Exp. in Fluids 23:20–28.Google Scholar
  73. Xu, H., Fife, S., Andereck, C.D. (2002). Ultrasound thermal imaging (UTI) of convective opaque fluids. Eurotherm Seminar 71 Proceedings Reims (France), Oct. 28–30, 2002 (Edits. C. Padet amp; H. Burkhardt ), University of Reims. 331–336.Google Scholar
  74. Yarin, A., Kowalewski, T.A., Hiller, W.J., Koch, St. (1996). Distribution of particles suspended in 3D laminar convection flow. Physics of Fluids 8: 1130–1140.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Tomasz A. Kowalewski
    • 1
  1. 1.Department of Mechanics and Physics of Fluids, IPPT PANPolish Academy of SciencesWarsawPoland

Personalised recommendations