Skip to main content

Microscopic-Macroscopic Modelling of Transport Phenomena during Solidification in Heterogeneous Systems

  • Chapter
Phase Change with Convection: Modelling and Validation

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 449))

Abstract

Microscopic-macroscopic approach to modelling of solidification in heterogeneous systems (the mushy zone of binary alloys, in manufacture of metal-matrix composites and in porous media) is addressed in the paper. Microscopic phenomena accompanying solidification and microscopic equations are presented. Averaging procedures (volume and ensemble averaging techniques) and their limitations are discussed. Macroscopic equations are derived and macroscopic phenomena described. Conditions for existence of local thermal and chemical equilibrium during solidification on the macroscopic scale are shown. Some examples of equilibrium and non-equilibrium solidification based on macroscopic approach are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amberg, G. (2002). Solidification, microstructure and convection. Lecture Notes from CISM Course “Phase Change with Convection: Modelling and Validation, Coordinated by T. Kowalewski and D. Gobin, September 2–6, CISM, Udine.

    Google Scholar 

  • Amberg, L., Chai, G., and Backerud, L. (1993). Determination of dendritic coherency in solidifying melts by rheological measurements. Materials Science and Engineering, A173: 101–103.

    Article  Google Scholar 

  • Aziz, M. J. (1996). Interface attachment kinetics in alloy solidification. Metallurgical and Materials Trans., 27A: 671–686.

    Article  Google Scholar 

  • Banaszek, J., Jaluria, Y., Kowalewski, T.A., and Rebow, M. (1999). Semi-implicit FEM analysis of natural convection in freezing water. Num. Heat Transfer, A36: 449–472.

    Article  Google Scholar 

  • Banaszek, J., and Furmanski, P. (2000). FEM analysis of binary dilute system solidification using the anisotropic porous medium model of a mushy zone. Computer Assisted Mechanics and Engineering Sciences, 7: 343–362.

    MATH  Google Scholar 

  • Banaszek, J., Browne, D.J., and Furmanski, P. (2002). Some aspects of modelling of binary system solidification on a fixed grid. Proceedings of International Conference on Phase Change Processes, Kielce, June, Poland.

    Google Scholar 

  • Batchelor, G.K. (1974). Transport properties of two-phase materials with random structure. Ann. Rev. Fluid Mech., 6: 227–255.

    Article  Google Scholar 

  • Beckermann, C., and Viskanta, R. (1993). Mathematical modelling of transport phenomena during alloy solidification. Appl. Mech. Rev., 46: 1–27.

    Article  MathSciNet  Google Scholar 

  • Beckermann, C., Diepers, H.-J., Steinbach, I., Karma, A., and Tong, X. (1999). Modelling melt convection in phase-field simulations of solidification. J. of Computational Physics, 154: 468–496.

    Article  MATH  Google Scholar 

  • Bennon, W.D., and Incropera, F.P. (1987). A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems–I and–II. Int. JHeat & Mass Transfer, 30: 2161–2187.

    Article  MATH  Google Scholar 

  • Bouissou, Ph., and PelcĂ©, P. (1989). Effect of a forced flow on dendritic growth. Physical Review A, 40: 6673–6680.

    Article  Google Scholar 

  • Bousquet-Melou, P., Goyeau, B., Quitard, M., Fichot, F., and Gobin, D. (2002). Average momentum equation for interdendritic flow in a solidifying columnar mushy zone. Inter. J of Heat and Mass Transfer, 45: 3651–3665.

    Article  MATH  Google Scholar 

  • Browne, D. J., Hunt, J. D. (2000). A model of columnar growth using a front tracking technique. Modelling of Casting, Type=“Italic”>Welding and Advanced Solidification Processes IX, Springer Verlag, Aachen, Germany, 437–444.

    Google Scholar 

  • Browne, D. J.,Banaszek, J., and Hunt, J. D. (2002). Front tracking method on a fixed grid versus enthalpy approach in modelling of binary alloy solidification. Proceedings of IMECE 2002: International Mechanical Engineering Congress and Exhibition,November 17–22, New Orleans, USA.

    Google Scholar 

  • Browne, D.J., and O’Mahoney, D. (2001). Interface heat transfer in investment casting of aluminium alloys. Metallurgical and Materials Trans., 32A: 3055–3063.

    Article  Google Scholar 

  • Burden, M.H., Hunt, J. D. (1974). Cellular and dendritic growth. Journal of Crystal Growth, 22: 99–116.

    Article  Google Scholar 

  • Buyevich, Yu. A. (1992). Heat and mass transfer in disperse media. I. Averaged Field Equations. Int. J. Heat & Mass Transfer, 35: 2445–2452.

    Article  MATH  Google Scholar 

  • Chung, J.D., Lee, J.S., and Yoo, H. (1998). An extended similarity solution for the alloy solidification system. Proceedings of 11th IHTC, 7: 187–192.

    Google Scholar 

  • Furmanski P. (1994). A mixture theory for heat conduction in heterogeneous media. Int. J. Heat & Mass Transfer, 37: 2993–3002.

    Article  MATH  Google Scholar 

  • Furmanski, P. (1995). Influence of laminar convection of fluid on effective thermal conductivity of some porous media. Advances in Engineering Heat Transfer. Computational Mechanics Publications, 513–524.

    Google Scholar 

  • Furmanski, P. (1997). Heat conduction in composites. Homogenization and macroscopic behavior. Appl. Mech. Rev., 50: 327–356.

    Article  Google Scholar 

  • Furmanski, P. (1999). Thermal properties and local heat sources in composite materials. Thermal Conductivity, 24: 581–594.

    Google Scholar 

  • Furmanski, P. (2000). Modelling of transport phenomena during solidification of binary systems. Computer Assisted Mechanics and Engineering Sciences, 7: 391–402.

    MATH  Google Scholar 

  • Ganesan, S., Chan, C.L., and Poirier, D.R. (1992). Permeability for flow parallel to primary dendrite arms. Mater. Sci.and Eng., A151: 97–105.

    Article  Google Scholar 

  • Garda, B., Hodaj, F., Durand, F. (1993). Semi-analytical calculation of equiaxed grain-size in recoalescence conditions. Mater. and Eng., A173: 105–108.

    Article  Google Scholar 

  • Geindreau, C., and Auriault, J-L. (2001). Transport phenomena in saturated porous media undergoing liquid-solid phase change. Computer Assisted Mechanics and Engineering Sciences, 8: 391–402.

    Google Scholar 

  • Hills, R.N., Loper, D.E., and Roberts, P.H. (1992). On continuum models for momentum, heat and species transport in solid-liquid phase change systems. Int. Comm. Heat & Mass Transfer, 19: 585–594.

    Article  Google Scholar 

  • Hunt, J..D., and Lu, S. Z. (1996). Numerical modelling of cellular/dendritic array growth: spacing and structure predictions. Metallurgical and Materials Transactions, 27A: 611–623.

    Article  Google Scholar 

  • Junk, D. and Tryggvason, G. (1996). A front-tracking method for dendritic solidification. Journal of Computational Physics, 123: 127–148.

    Article  MathSciNet  Google Scholar 

  • Kaviany, M. (1995). Principles of Heat Transfer in Porous Media. Springer Verlag, 2nd edition, New York.

    Google Scholar 

  • Khan, J.A., and Tong, X. (1998). Unidirectional infiltration and solidification/remelting of Al-Cu alloy. J. of Thermophysics and Heat Transfer. 12: 100–106.

    Article  Google Scholar 

  • Koch, D.L., and Brady, J.F. (1987). A non-local description of advection-diffusion with application to dispersion in porous media. J. Fluid Mech., 387–403.

    Google Scholar 

  • Kunin, I.A. (1984). On foundations of the theory of elastic media with microstructure. Int. J.Engng Sci., 22: 969–978.

    Article  MATH  Google Scholar 

  • Krieger, I.M. (1972). Rheology of monodispersed lattices. Advances in Colloid Interface Science, 3: 111–136.

    Article  Google Scholar 

  • Langer, J.S. (1989). Dendrites, viscous fingers, and the theory of pattern formation. Science, 243: 1150–1156.

    Article  Google Scholar 

  • Loulou, T., Artyukhin, E.A., and Bardon, J.P. (1999). Estimation of thermal contact resistance during the first stages of metal solidification process: I–experiment principle and modelisation. International J. of Heat & Mass Transfer, 42: 2119–2127.

    Article  Google Scholar 

  • Loulou, T., Artyukhin, E.A., and Bardon, J.P. (1999). Estimation of thermal contact resistance during the first stages of metal solidification process: II–experimental set-up and results. International J. of Heat & Mass Transfer, 42: 2129–2142.

    Article  Google Scholar 

  • Mat, M.D., and Ilegbusi, O.J. (2002). Application of a hybrid model of mushy zone to macrosegregation in alloy solidification. Int. J. of Heat and Mass Transfer, 45: 279–289.

    Article  MATH  Google Scholar 

  • Matsumoto, K., Okada, M., Murakami, M., and Yabushita, Y. (1193). Solidification of porous medium saturated with aqueous solution in a rectangular cell. Int. J. Heat and Mass Trans., 36: 2869–2880.

    Article  Google Scholar 

  • Mortensen, A., and Flemings, M.C. (1996). Solidification of binary hypoeutectic alloy matrix composite castings. Metallurgical and Materials Trans., 27A: 595–609.

    Article  Google Scholar 

  • Murakami, K., and Okamoto, T. (1984). Fluid flow in the mushy zone composed of granular grains. Acta Metall., 32: 1741–1744.

    Article  Google Scholar 

  • Naterer, G.F., and Schneider, G.E. (1995). Phases model for binary-constituent solid-liquid phase transition. Part 1: Numerical Methods. Numerical Heat Transfer, Part B, 28: 111–126.

    Google Scholar 

  • Naumann, R. (1995). Marangoni convection around voids in Bridgman growth. J. of Crystal Growth, 154: 156–162.

    Article  Google Scholar 

  • Okada, M, Ochi, M., and Tateno, M. (1998). Solidification of a supercooled aqueous solution in a porous medium. Proceedings of 11 th IHTC, Kongjiu, Korea, 7: 169–174.

    Google Scholar 

  • O’Mahoney, D., and Browne, D.J. (2000). Use of experiment and an inverse method to study interface heat transfer during solidification in the investment casting process. Experimental Thermal and Fluid Science, 22: 111–122.

    Article  Google Scholar 

  • Poirier, D.R. (1987). Permeability for flow of interdendritic liquid in columnar-dendritic alloys. Metallurgical Trans., 18B: 245–255.

    Article  Google Scholar 

  • Poirier, D.R., Nandapurkar, P.J., and Ganesan, S. (1991). The energy and solute conservation equations for dendritic solidification. Metallurgical. Trans., 22B: 889–900.

    Article  Google Scholar 

  • Prakash, C., and Voller, V. (1989). On the numerical solution of continuum mixture model equations describing binary solid-liquid phase change. Numerical Heat Transfer B, 15: 171–189.

    Article  MATH  Google Scholar 

  • Prescott, P.J., Incropera, F.P., and Bennon, W.D. (1991). Modelling of dendritic solidification systems: reassessment of the continuum momentum equation. Int. J. of Heat and Mass Transfer, 34: 2351–2359.

    Article  Google Scholar 

  • Quintard, M., and Whitaker, S. (1993). One and two equations models for transient diffusion processes in two-phase systems. Advances in Heat Transfer, 23: 369–464.

    Article  Google Scholar 

  • Rappaz, M. (1989). Modelling of microstructure formation in solidification processes. International Materials Reviews, 34: 93–123.

    Google Scholar 

  • Rappaz, M., and Voller, V.R. (1990). Modelling of micro-macrosegregation in solidification processes. Metall. Trans., 21A: 749–753.

    Article  Google Scholar 

  • Rappaz, M., Gandin, Ch. A., Desbiolles, J. L., and Thevoz, Ph.. (1996). Prediction of grain structures in various solidification processes. Metallurgical and Materials Trans., 27A: 695–705.

    Article  Google Scholar 

  • SĂ€ltzer, W.D., and Schultz, B. (1983). Theory and measurement of the viscosity of suspensions. High Temperatures–High Pressures, 15: 289–298.

    Google Scholar 

  • Santoli, L., Cumo, F., and Menno, I. (1998). Freezing of liquid-saturated porous media of building materials. Proceedings of 11th IHTC, Kyongiu, Korea, 4: 387–391.

    Google Scholar 

  • Schrage, D.S. (1999). A simplified model of dendritic growth in the presence of natural convection. J. of Crystal Growth, 205: 410–426.

    Article  Google Scholar 

  • Shyy, W., Udaykumar, H. S., Rao, M..M., and Smith, R. W. (1996), Computational Fluid Dynamics with Moving Boundaries, Taylor and Francis, Washington DC, USA.

    Google Scholar 

  • Simpson, J.E., Garimella, S. V., and Guslick, M.M. (1998). Interface propagation in the presence of a fibrous phase in alloy solidification. Proceedings of II th IHTC, Kyongiu, Korea, 7: 235–240.

    Google Scholar 

  • Sinha, S.K., Sundararajan, T., and Garg, V.K. (1992). A variable property analysis of alloy solidification using the anisotropic porous medium approach. Int. J. of Heat and Mass Transfer: 2865–2877.

    Google Scholar 

  • Swaminathan, C.R., and Voller, V.R. (1992). General enthalpy method for modelling solidification processes. Metall. Trans., 23B: 651–65.

    Article  Google Scholar 

  • Swaminathan, C.R., and Voller, V.R. (1997). Towards a general numerical scheme for solidification systems. Int. J. of Heat and Mass Transfer, 40: 2959–2868.

    Google Scholar 

  • Timchenko, V.,. Chen, P.Y.P., de Vahl Davies, G, and Leonardi, E. (1998). Directional solidification in microgravity. Proceedings of 11th IHTC, Kyongju, Korea, 7: 241–246.

    Google Scholar 

  • Tönhardt, R., and Amberg, G. (1998). Phase-field simulation of dendritic growth in a shear flow. J. of Crystal Growth, 194: 406–425.

    Article  Google Scholar 

  • Wang, W., and Qiu, H.H. (2002). Interfacial thermal conductance in rapid contact solidification process. International J. of Heat & Mass Transfer, 45: 2043–2053.

    Article  MathSciNet  Google Scholar 

  • Warren, J. A., and Boettinger, W. J. (1995). Prediction of dendritic microsegregation patterns using a diffuse interface phase field model. Modelling of Casting, Type=“Italic”>Welding and Advanced Solidification Processes VII, M. Cross and J. Campbell eds, TMS, Warrendale, PA, USA, 601–607.

    Google Scholar 

  • Voller, V.R., Brent, A.D., Prakash, C. (1989). The modelling of heat, mass and solute transport in solidification systems. Int. J. Heat & Mass Transfer, 32: 1719–1731.

    Article  Google Scholar 

  • Voller, V.R., and Swaminathan, C.R. (1991). General source-based method for solidification phase change. Numerical Heat Transfer, 19: 175–189.

    Article  Google Scholar 

  • Viskanta, R. (1988). Heat transfer during melting and solidification of metals. Trans. of ASME. J. of Heat Transfer, 110: 1205–1219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

FurmaƄski, P. (2004). Microscopic-Macroscopic Modelling of Transport Phenomena during Solidification in Heterogeneous Systems. In: Kowalewski, T.A., Gobin, D. (eds) Phase Change with Convection: Modelling and Validation. International Centre for Mechanical Sciences, vol 449. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2764-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2764-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-20891-5

  • Online ISBN: 978-3-7091-2764-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics