Solidification microstructure, dendrites and convection

  • Gustav Amberg
Part of the International Centre for Mechanical Sciences book series (CISM, volume 449)


One crucial step in almost all materials processes is solidification in one form or other. The conditions under which the melt resolidifies will be crucial for the final microstructure of the material. The size and morphology of the individual grains that make up a polycrystalline material, the homogeneity of a monocrystal, the actual phase that is formed, as well as its local composition, is determined by the interplay between local heat and mass transfer and the thermodynamics of the phase change. Even though the microstructure of the material may change considerably during subsequent cooling and following process steps, the foundation has been laid at the point of solidification. Since local heat and mass transfer governs the phase change, it is obvious that any melt convection at all will be paramount in determining the structure of the material, thus making this an area of important applications that should interest fluid mechanists.


Natural Convection Rayleigh Number Solid Fraction Mushy Zone Peclet Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Rawahi, N. and Tryggvason, G., “Effect of Melt Flow on Dendritic Solidification”. Talk presented at 53rd annual meeting of the Division of Fluid Dynamics of the American Physical Society, Washington DC, Nov 19–21 (2000).Google Scholar
  2. Amberg, G. and Homsy, G.M. ‘Nonlinear Analysis of Buoyant Convection in Binary Solidification with Application to Channel Formation’, J. Fluid Mech., vol 252, pp 79–98, (1993).CrossRefMATHGoogle Scholar
  3. Ananth, R., and Gill, W.N., J. Crystal Growth vol 91, p. 587, (1988).CrossRefGoogle Scholar
  4. Ananth, R., and Gill, W.N., J. Crystal Growth, vol 179, p. 263, (1997).CrossRefGoogle Scholar
  5. Anderson, D.M., McFadden, G.B. and Wheeler, A.A., Physica D, vol 135, p. 175–194, (2000).MathSciNetCrossRefMATHGoogle Scholar
  6. Anderson, D.M. and Worster, M.G., J. Fluid Mech., vol 302, p. 307–331, (1995).MathSciNetCrossRefMATHGoogle Scholar
  7. Anderson, D.M. and Worster, M.G., J. Fluid Mech., vol 307, p. 245–267, (1996).CrossRefMATHGoogle Scholar
  8. Brattkus, K. Ph.D. Thesis,1988, Directional solidification of dilute binary alloys, Nothwestern UniversityGoogle Scholar
  9. Beckermann, C., Diepers, H.J., Steinbach, I., Karma, A., and Tong, X., “Modeling Melt Convection in Phase-Field Simulations of Solidification”, J. Computational Physics, Vol. 154, pp. 468–496, (1999a).CrossRefMATHGoogle Scholar
  10. Boettinger, W.J., Coriell, S.R., Greer, A.L., Karma, A., Kurz, W., Rappaz, M. and Trivedi, R., “Solidification Microstructures: Recent developments, future directions”, Acta Materialia, vol 48, pp 43–70, (2000).CrossRefGoogle Scholar
  11. Bouissou, P. Perrin, B. and Tabeling, P., Phys. Rev. A, vol 40, p. 509, (1989a):Google Scholar
  12. Bouissou, P. and Pelce, P. Phys. Rev. A, vol 40, p. 6673, (1989b).CrossRefGoogle Scholar
  13. Bühler L. and Davis, S.H. J. Crystal Growth, vol 186, pp. 629–647, (1998).CrossRefGoogle Scholar
  14. Brattkus, K. and Davis, S.H. emphJ. Crystal Growth, vol 87, p. 385, (1988a).CrossRefGoogle Scholar
  15. Brattkus, K. and Davis, S.H. emphJ. Crystal Growth, vol 89, p. 423, (1988b).CrossRefGoogle Scholar
  16. Canright, D., and Davis, S.H., Journal of Crystal Growth, vol 114, pp. 153–185, (1991).CrossRefGoogle Scholar
  17. Carlberg, T., Microgravity Q, vol 5, pp 135–145, (1995).Google Scholar
  18. Carlberg, T., Acta Astronautica, vol 40, pp 407–414, (1997).CrossRefGoogle Scholar
  19. Chen, F. and Chen, C.F., Journal of Fluid Mech., vol 227, pp. 567–586, (1991).CrossRefGoogle Scholar
  20. Copley, S.M., Giamei, A.F., Johnson, S.M. and Hornbecker, M.F. 1970 ‘The Origin of Freckles in Unidirectionally Solidified Castings’, Met. Trans., vol 1, p 2193–2205.CrossRefGoogle Scholar
  21. Caroli, B., Caroli, C., Misbah, C. and Roulet, B. Journal de Physique C, vol 46 (3), p. 401, (1985).CrossRefGoogle Scholar
  22. Coriell, S.R., Cordes, M.R., Boettinger, W.J. and Sekerka, R.F. ‘Convective and interfacial instabilities during unidirectional solidification of a binary alloy’, J. Crystal Growth, vol 49, pp 13–28, (1980).CrossRefGoogle Scholar
  23. S.R. Coriell, G.B. McFadden, R.F. Boisvert and R.F. Sekerka, J. Crystal Growth, vol 69, p. 15, (1984).CrossRefGoogle Scholar
  24. Chiareli, A.O.P. and Worster, M.G., J. Fluid Mech., vol 297, p. 293–305, (1995).CrossRefGoogle Scholar
  25. Dantzig, J.A. and Chao, L.S., Proc. 10th U.S. National Congress of Applied Mechanics, J. Lamb, ed., ASME, pp. 249–255, (1986).Google Scholar
  26. Davidson, P.A., “Magnetohydrodynamics in Materials Processing”, Annu. Rev. Fluid Mech, vol 31, pp 273–300, (1999).CrossRefGoogle Scholar
  27. Davis, S.H., “Hydrodynamic interactions in directional solidification”, J. Fluid Mech., vol 212, pp 241–262, (1990).MathSciNetCrossRefGoogle Scholar
  28. Davis, S. H. (2001). Theory of Solidification,Cambridge University Press.Google Scholar
  29. Delves, R.T. J. Crystal Growth, vol 8, p. 13, (1971).CrossRefGoogle Scholar
  30. Diepers, H.J., Beckermann, C., and Steinbach, I., “Simulation of Convection and Ripening in a Binary Alloy Mush Using the Phase-Field Method”, Acta Materialia, Vol. 47, pp. 3663–3678, (1999b).CrossRefGoogle Scholar
  31. Emms, P.W. and Fowler, A.C., J. Fluid Mech., vol 262, pp. 111–139, (1994).MathSciNetCrossRefMATHGoogle Scholar
  32. Esaka, H., Suter F. and Ogibayashi, S., ISIJ International, vol 10 (36), pp. 1264–1272, (1996).CrossRefGoogle Scholar
  33. Feltham, D.L. and Worster, M.G., J. Fluid Mech. vol 391, p. 337–357, (1999).CrossRefMATHGoogle Scholar
  34. Forth, S.A. and Wheeler, A.A., J. Fluid Mech. vol 202, p. 339 (1989).MathSciNetCrossRefMATHGoogle Scholar
  35. Fowler, A.C., IMA J. Appl. Math. vol 35, p. 159–174 (1985).CrossRefMATHGoogle Scholar
  36. Fredriksson, H., El Mahallawy, N., Taha, M., Liu Xiang and Wänglöw, G. Scandinavian Journal of Metallurgy, vol 15, p. 127, (1986).Google Scholar
  37. Fried, E., Curtin, M.E., “A phase-field theory for solidification based on a general anisotropie sharp-interface theory with interfacial energy and entropy”, Phys. D, 91, pp. 143–181, (1996).MathSciNetCrossRefMATHGoogle Scholar
  38. Glicksman, M.E. and Marsh, S.P., “The Dendrite”, in: D.T.J. Hurle (Ed.), Handb. Cryst. Growth, vol. 1, ch.13, Elsevier, Amsterdam, pp. 1077–1122, (1993).Google Scholar
  39. Glicksman, M.E., Koss, M.B., and Winsa, E.A., Phys. Rev. Lett., vol 73, p. 573, (1994).CrossRefGoogle Scholar
  40. Glicksman, M.E., Coriell, S.R., and McFadden, G.B., Ann. Rev. Fluid Mech., vol 18, p. 307 (1986).CrossRefGoogle Scholar
  41. Glicksman, M.E., Koss, M.B., Bushnell, L.T., LaCombe, J.C. and Winsa, E.A., ISIJ International, vol 35 (6), p. 1216, (1995).CrossRefGoogle Scholar
  42. Guba, P., J. Fluid Mech., vol 437, p. 337–365, (2001).MATHGoogle Scholar
  43. Hills, R.N., Loper, D.E. and Roberts, P.H., Q. J. Mech. appl. Math. vol 36, p. 505–539 (1983).CrossRefMATHGoogle Scholar
  44. Hobbs, A.K. and Metzener, P. J. Crystal Growth vol 112, p. 539 (1991).CrossRefGoogle Scholar
  45. Hwang, I.G., and Choi, C.K., J. Crystal Growth vol 220, p. 326–335 (2000).CrossRefGoogle Scholar
  46. Huang, J.S., and Barduhn, A.J., AIChE J. vol 31, p. 747 (1985).CrossRefGoogle Scholar
  47. Huang, H.W., Heinrich, J.C. and Poirier, D.R., Modelling Simul. Mater. Sci. Eng. vol 4, p. 245–259 (1996).CrossRefGoogle Scholar
  48. Huang, S.-C. and Glicksman, M.E., “Fundamentals of dendritic solidification. I. Steady-state tip growth”. Acta Met., vol. 29 no. 5, pp. 701–716, (1981a).CrossRefGoogle Scholar
  49. Huang, S.-C. and Glicksman, M.E., “Fundamentals of dendritic solidification. II. Development of sidebranch structures”. Acta Met., vol. 29 no. 5, pp. 717–734, (1981b).CrossRefGoogle Scholar
  50. Huppert, H., “The fluid mechanics of solidification”, J. Fluid Mech., vol 212, pp 209–240, (1990).MathSciNetCrossRefGoogle Scholar
  51. Hurle, D.T.J., Jakeman, E. and Wheeler, A.A. “Effect of solutal convection on the morphological stability of a binary alloy”, J. Crystal Growth, vol 58, pp 163–179, (1982).CrossRefGoogle Scholar
  52. Hurle, D.T.J., Jakernan, E. and Wheeler, A.A. “Hydrodynamics stability of the melt during solidification of a binary alloy”, Phys. Fluids, vol 26, pp 624–626, (1983).MathSciNetCrossRefMATHGoogle Scholar
  53. Ivantsov, G.P., Dokl. Akad. Nauk SSSR, vol 58, p 567, (1947).Google Scholar
  54. Jeong, J.H., Goldenfeld, N. and Dantzig, J.A., Physical Rev. E, 64, 041602, (2001).Google Scholar
  55. Kallungal, J.P. and Barduhn, A.J., AIChE J., vol 23, p. 294, (1977).CrossRefGoogle Scholar
  56. Karma, A. and Rappel, W.-J., Physical Review Letters, vol 77, pp. 4050–4053, (1996a).CrossRefGoogle Scholar
  57. Karma, A. and Rappel, W.-J., “Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics”, Physical Review E, vol 53, pp R3017 - R3020, (1996b).CrossRefGoogle Scholar
  58. Kessler, D.A. and Levine, H., Phys. Rev. Lett., vol 57, pp 3069–3072, (1986).CrossRefGoogle Scholar
  59. Kobayashi, R., Bull. Jpn. Soc. Ind. Appl. Math., vol 1, p 22-, (1991).Google Scholar
  60. Koss, M.B., Bushnell, L.T., LaCombe, J.C., and Glicksman, M.E., Chem. Eng. Comm., Vol. 152–153, p. 351, (1996)CrossRefGoogle Scholar
  61. Kurz, W. and Fisher, D.J., Fundamentals of Solidification, Trans Tech Publications (1992)Google Scholar
  62. Lan, C.W. and Hsu, C.M., Journal of Crystal Growth, submitted (2001).Google Scholar
  63. Langer, J.S. and Müller-Krumbhaar, H., Acta Metall. Mater. vol 26 pp. 1681–1688, (1978).CrossRefGoogle Scholar
  64. Langer, J.S., “Instabilities and pattern formation in crystal growth”. Reviews of Modern Physics. vol 52 pp. 1–28, (1980).CrossRefGoogle Scholar
  65. Lee, Y.-W., Ananth, R. and Gill, W.N., Chem. Eng. Comm. vol 116, p. 193, (1992).CrossRefGoogle Scholar
  66. Lee, Y.-W. Ananth, R. and Gill, W.N., J. Crystal Growth, vol 132, p. 226, (1993).CrossRefGoogle Scholar
  67. Lee, Y.-W., Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, New York, (1991).Google Scholar
  68. Lee, Y.-W., Smith, R.N., Glicksman, M.E., and Koss, M.B., ‘Effects of buoyancy on the growth of dendritic crystals’, in Annual Review of Heat Transfer, C.-L. Tien (Ed.), vol 7, pp 59–139, (1996).Google Scholar
  69. Loginova, I., Amberg, G. and Agren, J., Acta Materialia, vol 49, p. 573–581, (2001).CrossRefGoogle Scholar
  70. McFadden, G.B. and Coriell, S.R., J. Crystal Growth, vol 74, p. 507, (1986).CrossRefGoogle Scholar
  71. Meiron, D.I., Phys. Rev. A, vol 33, pp 2704–2715, (1986).CrossRefGoogle Scholar
  72. Merchant, G.J. and Davis, S.H., J. Crystal Growth, vol 96, p. 737, (1989).CrossRefGoogle Scholar
  73. Mullins, W.W. and Sekerka, R.F., “Morphological Stability of a Particle Growing by Diffusion or Heat Flow”, Journal of Applied Physics, Vol. 34, pp. 323–329, (1963).CrossRefGoogle Scholar
  74. Mullins, W.W. and Sekerka, R.F., “Stability of a Planar Interface During Solidification of a Dilute Binary Alloy”, Journal of Applied Physics, Vol. 35, pp. 444–451, (1964).CrossRefGoogle Scholar
  75. Murakami, K., Fujiyama, T., Koike, A., and Okamoto, T., Acta Met. vol 31 (9), p. 1425, (1983).CrossRefGoogle Scholar
  76. Murakami, K., Aihara, H. and Okamoto, T.,, Acta Met., vol 32 (6), p. 933 (1984).CrossRefGoogle Scholar
  77. Nield, D.A., “The thermohaline Rayleigh-Jeffreys problem”, Journal of Fluid Mechanics, Vol. 29, pp. 545–558, (1967).CrossRefGoogle Scholar
  78. Neilson, D.G. and Incropera, F.P., Int. J. Heat and Mass Transfer, Vol. 36, pp. 489–505, (1993).CrossRefMATHGoogle Scholar
  79. Penrose, O. and Fife, P.C., Physica D, vol 43, p. 44–62, (1990).MathSciNetCrossRefMATHGoogle Scholar
  80. Pines, V., Chait, A., and Zlatkowski, M., J. Crystal Growth, vol 167 p. 383, (1996).CrossRefGoogle Scholar
  81. Poirier, D.R. and Heinrich, J.C., Materials Characterization vol 32, p. 287–298 (1994).CrossRefGoogle Scholar
  82. Provatas, N., Goldenfeld, N., Dantzig, J., LaCombe, J.C., Lupulescu, A., Koss, M. B., Glicksman, M. E. and Almgren, R., Phys. Rev. Lett., vol 82, p 4496-, (1999a).Google Scholar
  83. Provatas, N., Goldenfeld, N., Dantzig, J., “Adaptive Mesh Refinement Computation of Solidification Microstructures using Dynamic Data Structures”, J. Comp. Phys., vol 148, pp 265–290 (1999b).MathSciNetCrossRefMATHGoogle Scholar
  84. Riahi, D.N., J. Crystal Growth, vol 216, pp 501–511, (2000).CrossRefGoogle Scholar
  85. Sample, A.K. and Hellawell, A., ‘The Mechanisms of Formation and Prevention of Channel Segregation during Alloy Solidification’, Met. Trans. A, vol 15, pp 2163–2173, (1984).CrossRefGoogle Scholar
  86. Sarazin, J.R. and Hellawell, A., ‘Channel Formation in Pb-Sn, Pb-Sb, and Pb-Sn-Sb Alloy Ingots and Comparison with the System NH4C1–H2O’, Met. Trans. A, vol 19, pp 1861–1871, (1988).CrossRefGoogle Scholar
  87. Schneider, M.C., and Beckermann, C., “A numerical study of the combined effects of microsegregation, mushy zone permeability and flow, caused by volume contraction and thermosolutal convection, on macrosegregation and eutectic formation in binary alloy solidification”, Int. J. Heat Mass Transfer, vol 38, pp 3455–3473, (1995a).CrossRefGoogle Scholar
  88. Schneider, M.C., and Beckermann, C., “Formation of Macrosgregation by multicomponent thermosolutal convection during the solidification of steel”, Metallurgical and Materials Transactions A, vol 26, pp 2373–2388, (1995b).CrossRefGoogle Scholar
  89. Schulze, T.P. and Davis, S.H. J. Crystal Growth, vol 143, p. 317, (1994).CrossRefGoogle Scholar
  90. Schulze, T.P. and Davis, S.H. J. Crystal Growth, vol 149, p. 253, (1995).CrossRefGoogle Scholar
  91. Schulze, T.P. and Worster, M.G. J. Fluid Mech., vol 356, p. 199–220, (1998).CrossRefMATHGoogle Scholar
  92. Sekerka, R.F., Coriell, S.R., and McFadden, G.B., J. Crystal Growth, vol 154, p. 370, (1995).CrossRefGoogle Scholar
  93. Sekerka, R.F. and Bi, Z., “Phase field model of multicomponent alloy solidification with hydrodynamics”, Proc of ‘Interfaces for the Twenty-First Century’, Monterey, August 1999.Google Scholar
  94. Tait, S., Jahrling, K. and Jaupart, C., Nature, Vol. 359, pp. 406–408, (1992).CrossRefGoogle Scholar
  95. Tait, S. and Jaupart, C., J. Geophysical Res., vol 97 (B5), pp 6735–6756, (1992).CrossRefGoogle Scholar
  96. Tewari, S.N. and Chopra, M.A., J. Crystal Growth, vol 118, pp 183-, (1992).Google Scholar
  97. Tong, X., Beckermann, C., and Karma, A., “Velocity and Shape Selection of Dendritic Crystals in a Forced Flow”, Physical Review E, Vol. 61, pp R49 - R52, (2000).CrossRefGoogle Scholar
  98. Tönhardt, R. and Amberg, G., “Phasefield Simulation of Dendritic growth in a Shear Flow”, J. Crystal Growth, vol 194, pp 406–425, (1998).CrossRefGoogle Scholar
  99. Tönhardt, R, and Amberg, G., Dendritic growth of randomly oriented nuclei in a shear flow, Journal of Crystal Growth, vol 213, pp 161–187, (2000a).CrossRefGoogle Scholar
  100. Tönhardt, R, and Amberg, G., Simulation of natural convection effects on SCN crystals, Physical Review E, vol 62, pp 828–836, (2000b).CrossRefGoogle Scholar
  101. Turner, J.S., “Multicomponent convection”, Ann. Rev. Fluid Mech., vol 17, pp 11–44, (1985).CrossRefGoogle Scholar
  102. Wang, S.-L., Sekerka, R.F., Wheeler, A.A., Murray, B.T., Coriell, S.R. and Braun, R.J., Physica D, vol 69, pp 189-, (1993).Google Scholar
  103. Warren, J.A., and Boettinger, W.J., Acta Metall. Mater., vol 43, pp 689–703, (1995).CrossRefGoogle Scholar
  104. Wheeler, A.A. J. Crystal Growth, vol 67, p. 8, (1984).CrossRefGoogle Scholar
  105. Worster, M.G., “Convection in mushy layers”, Ann. Rev. Fluid Mech., vol 29, pp 91–122, (1997).MathSciNetCrossRefGoogle Scholar
  106. Worster, M.G., “Instabilities of the liquid and mushy regions during solidification of alloys”, Journal of Fluid Mechanics, vol 237, pp 649–669, (1992).CrossRefMATHGoogle Scholar
  107. Xu, J.-J., “Interfacial wave theory of pattern formation”, Springer Verlag, New York, (1997).Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Gustav Amberg
    • 1
  1. 1.Department of MechanicsKTHStockholmSweden

Personalised recommendations