Kinetic Equations from Hamiltonian Dynamics: The Markovian Approximations

  • H. Spohn
Part of the International Centre for Mechanical Sciences book series (CISM, volume 293)


The goal of non-equilibrium statistical mechanics is to explain the macroscopic behavior of matter from the dynamics of its microscopic constituents, i.e. atoms or molecules. Because of the large number of particles involved, this is a rather ambitious program. Therefore, as an intermediate step, one tries to write down an approximately valid dynamics as governed by a kinetic equation. Examples are the Boltzmann equation for a dilute gas, the hydrodynamic equations for an “aged” fluid, etc., There is a lot known about the interrelationship between the microscopic and kinetic description of a physical system and it would be rather hopeless to press all these results into one lecture. Therefore I would like to do three things.


Kinetic Equation Boltzmann Equation Hard Sphere Specular Reflection Weak Coupling Limit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. E. Lanford, Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications, ed. J. Moser, Lecture Notes in Physics 38, p. 1. Springer, Berlin (1975)CrossRefGoogle Scholar
  2. [2]
    O. E. Lanford, On the derivation of the Boltzmann equation. Soc. Math. de France, Astérisque 40, 117 (1976)MathSciNetGoogle Scholar
  3. [3]
    F. King, BBGKY hierarchy for positive potentials. Ph. D. Thesis, Dep. of Math., Univ. of Cal. at Berkeley (1975)Google Scholar
  4. [4]
    H. van Beijeren, O. E. Lanford, J. L. Lebowitz, H. Spohn, Equilibrium time correlation functions in the low density limit, preprint (1979)Google Scholar
  5. [5]
    H. Spohn, Kinetic equations from Hamiltonian dynamics: The Markovian limit. Lecture Notes, University of Leuven, 1979Google Scholar
  6. [6]
    G. Papanicalaou, private communicationGoogle Scholar
  7. [7]
    H. Neunzert, Neuere qualitative und numerische Methoden Plasmaphysik, Vorlesungsmanuskript Paderborn, 1975Google Scholar
  8. [8]
    W. Braun, K. Hepp, Comm. Math. Phys. 56, 101 (1977)CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    G. Gallavotti, Lectures on the billiard. In: Dynamical Systems, Theory and Application, ed. J. Moser. Lecture Notes in Physics 38, p. 236. Springer, Berlin (1975)CrossRefGoogle Scholar
  10. [10]
    G. Papanicalaou, Bull. AMS 81, 330 (1975)CrossRefGoogle Scholar
  11. [11]
    E. H. Hauge, What can one learn from Lorentz models? In; Transport Phenomena, ed. L. Garrido, Lecture Notes in Physics 31, p. 338. Springer, Berlin (1974)Google Scholar
  12. [12]
    B. J. Alder, W. E. Alley, J. Stat. Phys. 19, 341 (1978)CrossRefGoogle Scholar
  13. [13]
    J. C. Lewis, J. A. Tjon, Physics Letters 66A, 349 (1978)CrossRefGoogle Scholar
  14. [14]
    R. K. Alexander, The infinite hard sphere system. Ph. D. Thesis, Dep. of Math. Univ. of Cal. at Berkeley (1975)Google Scholar
  15. [15]
    C. Cercignani, Transport Theory and Statistical Physics 2, 211 (1972)CrossRefMATHMathSciNetGoogle Scholar
  16. [16]
    O. E. Lanford, Notes of the lectures at the troisième cycle at Lausanne, 1978, unpublishedGoogle Scholar
  17. [17]
    A. A. Abrikosov, I. M. Khalatnikov, Soviet Phys. JETP 34, 135 (1958)MathSciNetGoogle Scholar
  18. [18]
    M. Bixon, R. Zwanzig, Phys. Rev. 187, 267 (1969)CrossRefMathSciNetGoogle Scholar
  19. [19]
    R. F. Fox, G. E. Uhlenbeck, Phys. Fluids 13, 1893, 2881 (1970)CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    T. Kirkpatrick, E. G. D. Cohen, J. R. Dorfman, Phys. Rev. Lett. 42, 862 (1979)CrossRefGoogle Scholar
  21. [21]
    N. G. van Kampen, Phys. Lett. A13, 458 (1976)Google Scholar
  22. [22]
    M. Kac, J. Logan, Fluctuations. Studies in Statistical Mechanics, to appearGoogle Scholar
  23. [23]
    M. Kac, Fluctuations near and far from equilibrium. In: Statistical Mechanics and Statistical Methods in Theory and Application. Ed. U. Landman. Plenum Press, New York (1977)Google Scholar
  24. [241.
    M. Klaus, Helv. Phys. Acta 48, 99 (1975)MathSciNetGoogle Scholar
  25. [25]
    R. Ellis, M. Pinsky. J. de Mathématique Pure et Appliqué 54, 125 (1975)MATHMathSciNetGoogle Scholar
  26. [26]
    N. G. van Kampen, The expansion of the master equation. In: Advances in Chemical Physics 34, p. 245, ed. I. Prigogine. John Wiley, New York (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • H. Spohn
    • 1
  1. 1.Universität MünchenMünchenGermany

Personalised recommendations