Advertisement

Existence and Uniqueness Theorems for the Boltzmann Equation

  • A. Palczewski
Part of the International Centre for Mechanical Sciences book series (CISM, volume 293)

Abstract

The aim of these lecture notes is the presentation of existence theorems for the Boltzmann equation. We do not attempt to give a complete survey of the present state of the theory as two such surveys has been written recently (Fiszdon, Lachowicz, Palczewski [12] and Greenberg, Polewczak, Zweifel [17]). We are rather going to present those results which, according to the present author’s opinion, shown to be most fruitful in the further development of the whole theory.

Keywords

Boltzmann Equation Global Existence Mild Solution Collision Operator Collision Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkeryd, L.: On the Boltzmann equation, Arch. Rat. Mech. Anal., 45, 1, 1972.MATHMathSciNetGoogle Scholar
  2. 2.
    Arkeryd, L.: Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rat. Mech. Anal., 77, 11, 1981.CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Arkeryd, L.: Asymptotic behaviour of the Boltzmann equation with infinite range forces, Commun. Math. Phys., 86, 475, 1982.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Arkeryd, L.: On the Boltzmann equation in unbounded space far from equilibrium and the limit of zero mean free path, Commun. Math. Phys., 105, 205, 1986.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Caflisch, R.E.: The Boltzmann equation with soft potential, Commun. Math. Phys., 70, 71, 1980.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Carleman, T.: Sur la theorie de l’equation integro-differentielle de Boltzmann, Acta Math., 60, 91, 1933.CrossRefMathSciNetGoogle Scholar
  7. 7.
    Carleman, T.: Probleme Mathematiques dans la Theorie Cinetique des Gas, Upsala 1957.Google Scholar
  8. 8.
    Cercignani, C.: On Boltzmann equation with cut-off potentials, Phys. Fluids, l0, 2097, 1967.CrossRefGoogle Scholar
  9. 9.
    Drange, H.B.: The linearized Boltzmann collision operator for cut-off potentials, SIAM J. Appl.Math., 21, 665, 1975.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Elmroth, T.: Global boundedness of moments of solution of the Boltzmann equation for infinite range forces, Arch. Rat. Mech. Anal., 82, 1, 1983.CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Elmroth, T.: On the H-function and convergence towards equilibrium for a space-homogeneous molecular density, SIAM J. Appl. Math., 44, 150, 1984.CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Fiszdon, W., Lachowicz, M., Palczewski, A.: Existence problems of the non-linear Boltzmann equation, In: Trends and Applications of Pure Mathematics to Mechanics, Ciarlet, P.G. and Roseau, M., Eds., Lect.Notes in Phys. No 195 Springer, Berlin 1984, p. 63.CrossRefGoogle Scholar
  13. 13.
    Gluck, P.: Solution of the Boltzmann equation, Trans. Th. Stat. Phys., 9, 43, 1980.CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Grad, H.: Principles of the kinetic theory of gases, In: Handbuch der Physik, Fluegge, S., Eds., Springer, Berlin 1958, vol 12, 205.Google Scholar
  15. 15.
    Grad, H.: Asymptotic theory of the Boltzmann equation II, In: Proc. III Symp. RGD, Laurmann, J.A., Ed., Academic Press, New York 1963, vol 1, 26.Google Scholar
  16. 16.
    Grad, H.: Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equation, Proc.Symp.Appl.Math., 11, Amer.Math.Soc., Providence, R.I. 1965, 154.Google Scholar
  17. 17.
    Greenberg, W., Polewczak, J., Zweifel, P.F.: Global existence proofs for the Boltzmann equation, In: Nonequilibrium Phenomena I: The Boltzmann Equation, Lebowitz, J.L. and Montroll, E.W., Eds., North-Holland, Amsterdam 1983, p. 19.Google Scholar
  18. 18.
    Illner, R., Shinbrot, M.: The Boltzmann equation: global existence for a rare gas in an infinite vacuum, Commun. Math. Phys., 95, 217, 1984.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Kaniel, S., Shinbrot, M.: The Boltzmann equation: uniqueness and local existence, Commun. Math. Phys., 58, 65, 1978.CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Maslova, N.B., Tchubenko, R.P.: Asymptotic properties of solutions of the Boltzmann equation (in Russian), Doki. Acad. Nauk SSSR, 721, 800, 1972.Google Scholar
  21. 21.
    Maslova, N.B., Tchubenko, R.P.: On solutions of the non-stationary Boltzmann equation (in Russian), Vestnik Leningrad Univ., 1, 100, 1973.Google Scholar
  22. 22.
    Maslova, N.B., Tchubenko, R.P.: Lower bounds of solutions of the Boltzmann equation (in Russian), Vestnik Leningrad Univ., 7, 109, 1976.Google Scholar
  23. 23.
    Maslova, N.B., Tchubenko, R.P.: Relaxation in a monoatomic space-homogeneous gas (in Russian), Vestnik Leningrad Univ., 15, 90, 1976.Google Scholar
  24. 24.
    Morgenstern, D.: General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules, Proc. Nat. Acad. Sci. U.S.A., 40, 719, 1954.CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Morgenstern, D.: Analytical studies related to the Maxwell-Boltzmann equation, J. Rat. Mech. Anal., 4, 533, 1955.MATHMathSciNetGoogle Scholar
  26. 26.
    Nishida, T., Imai, K.: Global solutions to the initial value problem for the nonlinear Boltzmann equation, Publ. RIMS, 12, 229, 1976.CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Palczewski, A.: Evolution operators generated by the space and time nonhomogeneous linearized Boltzmann operator, Trans. Th. Stat. Phys., l4, 1, 1985.CrossRefMathSciNetGoogle Scholar
  28. 28.
    Palczewski, A.: Existence of global solutions to the Boltzmann equation in L, In: Proc. XV Symp. RGD, Boffi, V. and Cercignani, C., Eds., B.G.Teubner, Eds., 1986, vol. 1, p. 144.Google Scholar
  29. 29.
    Povzner, A.Ya.: Boltzmann equation in the kinetic theory (in Russian), Mat. Sbornik, 58, 65, 1962.MathSciNetGoogle Scholar
  30. 30.
    Shizuta, Y.: On the classical solutions of the Boltzmann equation, Comm.Pure Appl.Math., 36, 705, 1983.CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Truesdell, C., Muncaster, R.G.: Fundamentals of Maxwell’s Kinetic Theory of a Simple Monoatomic Gas, Academic Press, 1980.Google Scholar
  32. 32.
    Ukai, S.: On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50, 179, 1974.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1988

Authors and Affiliations

  • A. Palczewski
    • 1
  1. 1.Warsaw UniversityWarsawPoland

Personalised recommendations