Mechanical ventilators and ventilator testers

  • G. Belforte
  • G. Eula
  • T. Raparelli
Conference paper
Part of the CISM Courses and Lectures book series (CISM, volume 473)


In the human organism, the respiratory function is involuntary and essential to life. At times, however, as in surgical operations using general anesthesia or as a result of respiratory insufficiency, the patient needs help breathing. In the first case, the general anesthesia completely stops the thoracic muscles and a mechanical ventilator is needed in order to force the oxygen-air mix into the patient’s lungs (volume control ventilators). In the second case, the patient is conscious and can breath spontaneously, but appropriate respiratory training is useful to increase his or her pulmonary efficiency (pressure control ventilators). The paper presents a prototype of a fully pneumatic gas-powered portable volume control ventilator, together with two types of ventilator tester which simulate breathing capacity and resistance of infants, children and adults. Specially developed software makes it possible to control and monitor all respiratory parameters. All prototypes performed well, demonstrating the feasibility of developing new breathing systems and testers.


Mechanical Ventilator Airway Resistance Respiratory Parameter Pressure Control Ventilator Breathing System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Nel corpo umano la funzione respiratoria è un atto involontario indispensabile per la sopravvivenza dell’organismo. Tuttavia in interventi chirurgici oppure in insufficienze respiratorie, il paziente deve essere “aiutato a respirare” con appositi apparecchi medicali. Nel primo caso l’anestesia totale blocca completamente i muscoli toracici e quindi la macchina deve insufflare forzatamente nei polmoni una miscela di aria ed ossigeno (respiratori volumetrici). Nel secondo caso la persona è cosciente, e quindi respira ancora da sola, ma deve recuperare parte della sua capacità polmonare con un’adeguata “ginnastica respiratoria” (respiratori pressurimetrici). Il presente lavoro si propone di presentare il prototipo di un respiratore volumetrico portatile di emergenza completamente pneumatico e due modelli di tester per ventilatori. I tester per ventilatori simulano capacità e resistenze polmonari di neonati/bambini/adulti. Un software dedicato consente la verifica di ogni parametro respiratorio controllato. I risultati ottenuti sui prototipi qui presentati sono buoni e dimostrano l’efficienza di modelli innovativi.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Mead, J., and Milic-Emili, J. (1994). Theory and methodology in respiratory mechanics with glossary of symbols. Handbook of physiology. American Physiology Society, Washington.Google Scholar
  2. Jain, A.B., Choukroun, M.L., Tabka, Z., Ultman, J.S. (1970). High-frequency oscillatory pressure-flow relationship in the airways of laringo-tracheo-bronchial tree casts. Medical & Biological Engineering & Computing.Google Scholar
  3. Belforte, G., Eula, G., Raparelli, T. (1999). La pneumatica per respiratori artificiali, Oleodinamica-Pneumatica, ed. Tecniche Nuove, 46–54.Google Scholar
  4. Herzog, P., Norlander, O.P. (1968). Distribution of alveolar volumes with different types of positive pressure gas-flow patterns. Opusc.Med.Bd.Google Scholar
  5. Lyager, S., (1968). Influence of flow pattern on the distribution of respiratory air during intermittent positive-pressure ventilation. Acta Anaesthesia Scandinav.Google Scholar
  6. Brown, J., and Campell, D. (1964). The electrical analogue for lung function. Biomechanics and Related Bio-Engineering Topics. Kenedi.Google Scholar
  7. Belforte, G., and Rossetto, M. (1983). Studio di un circuito di prova per l’analisi di respiratori artificiali. Tecnica Ospedaliera.Google Scholar
  8. ASTM F1161. (1988) Minimum performance and safety requirements for components and systems of anaesthesia gas machine.Google Scholar
  9. ASTM F1208. (1989). Minimum performance and safety requirements for anaesthesia breathing systems.Google Scholar
  10. ASTM F1100. (1990). Ventilators for use during critical care.Google Scholar
  11. ASTM F1101. (1990). Ventilators for use during anaestesia.Google Scholar
  12. ASTM F920. (1993). Resuscitators for use with humans.Google Scholar
  13. ISO 6358. (1989). Pneumatic fluid power. Components using compressible fluids. Determination of flow-rate characteristics.Google Scholar
  14. Belforte, G., Eula, G., Raparelli, T. (1992). Pneumatic Control of a Portable Artificial Respirator. IFToMM-jc International Symposium on THEORY OF MACHINES AND MECHANISMS” Nagoya (Japan). Vol. I, 413–417.Google Scholar
  15. Belforte, G., Eula, G., Ferraresi, C., Sorli, M, Raparelli, T. Patent TO92A00 0385. N.01263124, classif. A61M. (1992). Respiratore artificiale portatile volumetrico con rapporto tra inspirazione ed espirazione variabile.Google Scholar
  16. Belforte, G., Eula, G. (1994). Analisi di prove funzionali di elementi micropneumatici utilizzati come trigger. Oleodinamica & Pneumatica, ed. Tecniche Nuove,72–80.Google Scholar
  17. Belforte, G., Eula, G., Raparelli, T. (2000). A tester for artificial respirators. MEASUREMENT — Journal of International Measurement Confederation — IMEKO, 27–200, Measurement 27, 241–250.CrossRefGoogle Scholar
  18. Belforte, G., Eula, G., Raparelli, T. (2001). Macchine per la misura delle caratteristiche dei respiratori artificiali. Oleodinamica-Pneumatica, ed.Tecniche Nuove, 54–60.Google Scholar
  19. Belforte, G., Eula, G., Raparelli, T. Patent TO 96A000015, N.01284315, classif. G01F. (1996). Misuratore di portata di un fluido a pareti sottili.Google Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • G. Belforte
    • 1
  • G. Eula
    • 1
  • T. Raparelli
    • 1
  1. 1.Politecnico Di TorinoTorinoItaly

Personalised recommendations