Computation of Rigid Body Motion Parameters from Video-Based Measurements

  • Umberto Tarantino
  • Dario Perugia
  • Giovanni Campanacci
  • Ettore Pennestrì
Conference paper
Part of the CISM Courses and Lectures book series (CISM, volume 473)


The objective of the work is to compare and improve the accuracy of existing methods for the computation of rigid body parameters from positions, velocities and accelerations of a set of non colinear anatomical landmarks. Instead of the common Euler angles, Cardan angles or Bryant angles, the results are expressed in terms of the screw axis parameters (i.e. axis versor and rotation angle). In clinical analysis the physical meaning of this axis is surely better understood than the named angles. The paper summarizes also the main steps of noteworthy algorithms for the extraction of finite and infinitesimal screw motion parameters from noisy measurements of markers positions, velocities and accelerations. The sensitivity to data errors of the methods reviewed has been investigated by means of numerical tests. A commercial human motion analysis was also used for the field testing.


Rigid Body Motion ASME Journal Screw Axis Angular Velocity Vector Axis Versor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. E. Pennestrì, E. A. Renzi, P. Santonocito, Dynamic modeling of the human arm, with video-based experimental analysis, Multibody System Dynamics, 7:389–406, 2002.CrossRefzbMATHGoogle Scholar
  2. G.G. Mozzi del Garbo. Discorso matematico sopra il rotamento dei corpi Neaples, 1763.Google Scholar
  3. O. Bottema, B. Roth. Theoretical Kinematics. North Holland, Amsterdam, 1979.zbMATHGoogle Scholar
  4. C.H. Suh, C.W. Radcliffe. Kinematics and Mechanisms Design. John Wiley and Sons, New York, 1978.Google Scholar
  5. Pennestri, E. Technical and Computational Dynamics. Casa Editrice Ambrosiana, Milano, 2001. (in Italian)Google Scholar
  6. H. Cheng, K.C. Gupta. An Historical Note on Finite Rotations, ASME Journal of Applied Mechanics, 56:139–145, 1989.CrossRefMathSciNetGoogle Scholar
  7. F.E. Veldpaus, H.J. Woltring, L.J.M.G. Dortmans. Least Squares Algorithm for the Equiform Transformation from Spatial Marker Coordinates, Journal of Biomechanics, 21:45–54, 1988.CrossRefGoogle Scholar
  8. C.W. Spoor, F.E. Veldpaus. Rigid Body Motion Calculated from Spatial Coordinates of Markers, Journal of Biomechanics, 13:391–393, 1980.CrossRefGoogle Scholar
  9. H.J. Woltring, R. Huiskes, A. de Lange, F.E. Veldpaus. Finite Control and Helical Axis Estimation from Noisy Landmark Measurements in the Study of Human Joint Kinematics, Journal of Biomechanics, 18:379–389, 1985.CrossRefGoogle Scholar
  10. T.A.G. Heeren, F.E. Veldpaus. Optical System to Measure to End Effector Position for On-Line Control Purposes, International Journal of Robotics Research, 11:53–63, 1992.CrossRefGoogle Scholar
  11. A.J. Laub, G.R. Shifflett. Linear Algebra Approach to the Analysis of Rigid Body Displacement from Initial and Final Position Data, ASME Journal of Applied Mechanics, 49:213–216, 1982.CrossRefGoogle Scholar
  12. G.R. Shifflett, A.J. Laub. The Analysis of Rigid Body Motion from Measured Data, ASME Journal of Dynamic Systems, Measurement and Control, 117:578–584, 1995.CrossRefGoogle Scholar
  13. Gupta K.C., Chutakanonta P. Accurate Determination of Object Position from Imprecise Data, ASME Journal of Mechanical Design, 120:559–564, 1998.CrossRefGoogle Scholar
  14. Beggs, J.S. Kinematics. Hemisphere, Washington D.C., 1983.zbMATHGoogle Scholar
  15. Gupta, K.C. Measures of Positional Error for a Rigid Body, ASME Journal of Mechanical Designl 19:346–348, 1997.CrossRefGoogle Scholar
  16. Park, F.C. Distance Metrics on the Rigid-Body Motions with Applications to Mechanical Design, ASME Journal of Mechanical Design, 117:48–54, 1995CrossRefGoogle Scholar
  17. Sommer, H.J. Determination of First and Second Order Instant Screw Parameters from Landmark Trajectories ASME Journal of Mechanical Design, 114:274–282, 1992.CrossRefGoogle Scholar
  18. Angeles, J. Spatial Kinematic Chains. Springer Verlag, Berlin, 1982.CrossRefzbMATHGoogle Scholar
  19. Campanacci, G. Review and development of algorithms for the computattion of screw parameters from experimentally measured motions, Tesi di Laurea, Università degli Studi di Roma Tor Vergata, 2000. (in italian)Google Scholar
  20. Angeles J. Automatic Computation of the Screw Parameters of Rigid Body Motions. Part I: Finitely-Separated Positions, ASME Journal of Dynamic Systems, Measurement and Control, 108:32–38, 1986.CrossRefzbMATHGoogle Scholar
  21. Angeles, J. Automatic Computation of the Screw Parameters of Rigid Body Motions. Part II: Infinitesimally seprated Positions, ASME Journal of Dynamic Systems, Measurement and Control, 108:39–43, 1986.CrossRefzbMATHGoogle Scholar
  22. Angeles, J. Computation of Rigid-Body Angular Acceleration from Point-Acceleration Measurements, ASME Journal of Dynamic Systems, Measurement and Control 109:124–127, 1987.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2004

Authors and Affiliations

  • Umberto Tarantino
    • 1
  • Dario Perugia
    • 1
  • Giovanni Campanacci
    • 2
  • Ettore Pennestrì
    • 1
  1. 1.Dipartimento di Chirurgia - Sez.OrtopediaUniversità di Roma Tor VergataItaly
  2. 2.Dipartimento di Ingegneria MeccanicaUniversità di Roma Tor VergataItaly

Personalised recommendations