Skip to main content

Experimental Investigation of Failure Mechanisms in Ductile Materials

  • Chapter
Nonlinear Fracture Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 314))

  • 275 Accesses

Abstract

Theoretical and experimental study of interaction between variously oriented voids and cracks in a plastic medium is presented in an attempt to obtain a deeper insight into the processes of ductile failure in metals. Theoretical analysis is based on the slip-line technique. Experiments were performed with the use of specimens made of ductile metals. In these specimens systems of holes or slits simulating voids and cracks were prepared. Experimental results substantiate theoretical analysis and demonstrate the interaction between softening and hardening effects during the process of ductile failure in metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, E.H.: Plastic flow in a V-notched bar pulled in tension, J.Appl.Mech., 11 (1952), 331–336.

    Google Scholar 

  2. Hellan, K.: Introduction to Fracture Mechanics, McGraw-Hill, 1984.

    Google Scholar 

  3. Hill, R.: On discontinuous states, with special references to localized necking in thin sheets, J.Mech.Phys.Solids, 1 (1952), 19–20.

    Article  MathSciNet  Google Scholar 

  4. Hill, R.: The Mathematical Theory of Plasticity, Oxford at the Clarendon Press, Oxford 1956.

    Google Scholar 

  5. Marciniak, Z. and K. Kuczynski: Limit strains in the process of stretch-forming sheet metal, Int.J.Mech.Sci., 9 (1967), 609–620.

    Article  Google Scholar 

  6. Marciniak, Z. and K. Kuczynski: The forming limit curve for bending processes, Int.J.Mech.Sci., 21 (1979), 609–621.

    Article  MATH  Google Scholar 

  7. Rice, J.R. and D.M. Tracey: On the ductile enlargment of voids in triaxial stress fields, J.Mech.Phys.Solids, 17 (1969), 201–217.

    Article  Google Scholar 

  8. McClintock, F.A.: A criterion for ductile fracture by the growth of holes, J.Appl. Mech., 35 (1968), 363–371.

    Google Scholar 

  9. Thomason, P.F.: A theory for ductile fracture by internal necking of cavities, J.Inst. Metals, 96 (1968), 360–365.

    Google Scholar 

  10. Puttick, K.E.: Ductile fracture in metals, Phil.Mag., Series B, 4 (1959), 964–969.

    Google Scholar 

  11. Nagpal, V., McClintock, F.A., Berg, C.A. and M. Subudhi: Traction - displacement boundary conditions for plastic fracture by hole growth, Proc. Symp. Foundations of Plasticity, Warsaw 1972, Noordhoff Intern., Publ., Leyden 1973.

    Google Scholar 

  12. Szczepinski W.: On the role of strain concentrations in the mechanics of ductile fracture of metals, Arch.Mech., 40 (1988), 149–161.

    Google Scholar 

  13. Garr, L., Lee, E.H. and A.J. Wang: The pattern of plastic deformation in a deeply notched bar with semicircular roots, J.Appl.Mech., 23 (1956), 56–58.

    MATH  Google Scholar 

  14. Wang, A.J.: Plastic flow in a deeply notched bar with semicircular roots, Q.Appl. Math., 11 (1954), 427–438.

    MATH  Google Scholar 

  15. Garofalo, F.: Ductility in Creep, in: Ductility, papers presented at the seminar of the American Society for Metals, 1967, ASM, Metals Park, Ohio 1968.

    Google Scholar 

  16. Sklenicka, V., Saxl, I., Popule, J. and J. Cadek: Strain components in high temperature creep of a Cu-30% Zn alloy, Material Science and Engineering, 18 (1975), 271–278.

    Article  Google Scholar 

  17. Dyson, B., Loveday, M.S. and M.I. Rodgers: Grain boundary cavitation under various states of stress, Proc.Roy.Soc.London, A. 349 (1976), 245–259.

    Article  Google Scholar 

  18. Marcinkowski, M.J. and L. Larsen: The effect of atomic order on fracture surface morphology, Metall.Trans., 1 (1970), 1034–1036.

    Google Scholar 

  19. Rellick, J.R. and C.J. McMahon Jr.: The elimination of oxygen-induced intergranular brittleness in iron by addition of scavengers, Metall.Trans., L (1970), 929–937.

    Google Scholar 

  20. Szczepinski, W.: On experimental two-dimensional models of intercrystalline sliding and fracture in polycrystalline metals, Arch.Mech., 34 (1982), 502–514.

    Google Scholar 

  21. Szczepinski, W.: Experimental simulation of intercrystalline sliding and fracture in metals, Arch.Mech., 37 (1985), 691–704.

    Google Scholar 

  22. McClintock, F.A. and A.S. Argon: Mechanical Behavior of Materials, Addi= son-Wesley, 1966.

    Google Scholar 

  23. Hirth, J.P. and J. Lothe: Theory of Dislocations, McGraw-Hill, 1968.

    Google Scholar 

  24. Rogers, C.: The effect of materials variables on ductility, in: Ductility, Proc. Seminar ASM 1967, ASM Metals Park, Ohio 1968.

    Google Scholar 

  25. Backofen, W.A.: Deformation processing, Addison-Wesley, 1972.

    Google Scholar 

  26. Hult, J. and L. Travnicek: Carrying capacity of fibre bundles with varying strength and stiffness, J.Méc.Théor. et Appl., 2 (1983), 643–657.

    MATH  Google Scholar 

  27. Martin, J.W.: Micromechanisms in Particle-Hardened Alloys, Cambridge University Press, 1980.

    Google Scholar 

  28. Brown, L.M. and J.D. Embury: The initiation and growth of voids at second phase particles, Proc. 3rd Conf. on Strength of Metals and Alloys “The Microstructure and Design of Alloys”, paper 33 (1973), 164–169.

    Google Scholar 

  29. Trefilov, W.I. (Editor): Hardening and Fracture of Polycrystalline Metals (in Russian), Naukova Dumka, Kiev 1987.

    Google Scholar 

  30. Szczepinski, W.: On the Mechanisms of Ductile Fracture of Metals, in: Defects and Fracture, Proc. First International Symposium on Defects and Fracture, held at Tuczno, Poland, October 13–17, 1980, G.C. Sih and H. Zorski–editors, Martinus Nijhoff Publ., 1982, 155–163

    Google Scholar 

  31. Szczepinski, W.: On the mechanism of local internal necking as a factor of the process of ductile fracture of metals, Journal de Mécanique Théorique et Appliquée, Numero Special, 1982, 161–174.

    Google Scholar 

  32. Szczepinski, W.: Internal micronecking as a factor of the process of ductile fracture of metals, Arch.Mech., 35 (1983), 533–540.

    Google Scholar 

  33. Mróz, Z.: On generalized kinematic hardening rule with memory of maximal prestress, J. Mécanique Appliquée, 5 (1981), 241–260.

    MATH  Google Scholar 

  34. Szczepinski, W.: Plasticity approach to the mechanics of softening, and ductile fracture of metals, Proc. of the Symposium Plasticity Today, held in Udine, June 27–30, 1983.

    Google Scholar 

  35. Szczepinski, W.: On the mechanisms of ductile microfacture in metals; expgxifnental modelling, Arch.Mech., 36 (1984), 569–586.

    Google Scholar 

  36. Lee, E.H.: Plastic flow in a rectangularly notched bar subjected to tension, J.Appl. Mech., 21 (1954), 140–146.

    Google Scholar 

  37. Lee, E.H. and A.J. Wang: Plastic flow in deeply notched bars with sharp internal angles, Proc. 2nd U.S.Nat.Congr.Appl.Mech., 1954, 489–497.

    Google Scholar 

  38. Drucker, D.C.: On obtaining plane strain or plane stress conditions in plasticity, Proc. 2nd U.S.Nat.Congr.Appl.Mech., 1954, 485–488.

    Google Scholar 

  39. Szczepinski, W. and J. Miastkowski: Plastic straining of notched bars with intermediate thickness and small shoulder ratio, Int.J.Non-Linear Mech., 3 (1968), 83–97.

    Article  Google Scholar 

  40. Szçzepinski, W., Dietrich, L., Drescher, E. and J. Miastkowski: Plastic flow of axially-symmetric notched bars pulled in tension, Int.J.Solids Structures, 2 (1966), 543–554.

    Article  Google Scholar 

  41. Dietrich, L. and W. Szczepinski: Plastic yielding of axially-symmetric bars with non-symmetric V-notch, Acta Mechanica, 4 (1967), 230–240.

    Article  Google Scholar 

  42. Lippmann, H.: Ductility caused by progressive formation of shear cracks, in: Three Dimensional Constitute Relations and Ductile Fracture, ‘S. NematNasser ( Editor ), North-Holland, 1981, 389–404.

    Google Scholar 

  43. Dietrich, L.: Theoretical and experimental analysis of load-carrying capacity in tension of bars weakened by non-symmetric notches, Bull.Acad.Polon.Sci., Série Sci.Tech., 14 (1966), 363–372.

    Google Scholar 

  44. Szczepinski, W.: On modelling interaction between linear defects in the ideally ductile fracture mechanics, in: Inelastic Solids and Structures, M. Kleiber and J.A. König, eds, Pineridge Press 1989, 33–46.

    Google Scholar 

  45. Bishop, J.F.W.:On the complete solution of deformation of a plastic-rigid material, J.Mech.Phys.Solids, 2 (1953), 43–53.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Wien

About this chapter

Cite this chapter

Szczepinski, W. (1990). Experimental Investigation of Failure Mechanisms in Ductile Materials. In: Wnuk, M.P. (eds) Nonlinear Fracture Mechanics. International Centre for Mechanical Sciences, vol 314. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2758-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2758-2_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82246-3

  • Online ISBN: 978-3-7091-2758-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics