Introduction to Linear Fracture Mechanics

  • M. Matczynski
Part of the International Centre for Mechanical Sciences book series (CISM, volume 314)


On the basis of two-dimensional linear theory of elasticity in Muskhelishvili’s formulation, some notions of the linear elastic fracture mechanics are introduced. The notions are used to present several fundamental fracture criteria proposed by A. A. Griffith, G. R. Irwin, G. I. Barenblatt and D. S. Dugdale.


Stress Intensity Factor Crack Surface Energy Release Rate Crack Opening Displacement Fracture Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Panasyuk, V. V., Savruk M. P. and Datsyshin A. P. Stress distribution around cracks in plates and shells, (in Russian), Naukova Dumka, Kiev 1976.Google Scholar
  2. 2.
    Panasyuk, V.V., Savruk, M. P. and Datsyshin, A. P. A general methods of solution of two-dimensional problems in theory of cracks, Engineering Fracture Mechanics, 9, (1977), 481–497.CrossRefGoogle Scholar
  3. 3.
    Muskhelishvili, N. I.: Some basic problems of the mathematical theory of elasticity, Noordhoff, The Netherlands 1953.MATHGoogle Scholar
  4. 4.
    Muskhelishvili, N. I.: Singular integral equations, Noordhoff, Groningen, The Netherlands 1953.Google Scholar
  5. 5.
    Sneddon, I. N. Lowengrub, M.: Crack problems in the classical theory of elasticity, John Wiley & Sons, Inc., New York, London, Sydney, Toronto 1969.Google Scholar
  6. 6.
    Methods of analysis and solutions of crack problems, in: Mechanics of fracture 1 (Ed. G. C. Sih ), Noordhoff International Publishing, Leyden 1973.MATHGoogle Scholar
  7. 7.
    Kassir, M. K. and Sih, G. C.: Three dimensional crack problems, in: Mechanics of fracture 2, (Ed. G. C. Sih ), Noordhoff International Publishing, Leyden 1975.Google Scholar
  8. 8.
    Hahn, H. G.: Bruchmechanik, B. G. Teubner, Stuttgart 1976. 9.Cherepanov, G. P.: Mechanics of brittle fracture, McGraw-Hill International Book Company, New York 1979.Google Scholar
  9. 10.
    Tada, H., Paris, P. C. and Irwin, G. R.: The stress analysis of cracks handbook, Del Research Corporation, Hellertown, PA 1973.Google Scholar
  10. 11.
    Sih, G. C.: Handbook of stress intensity factors, Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, PA 1973.Google Scholar
  11. 12.
    Rooke, D. P. and Cartwright, D. G.: Compendium of stress intensity factors, London, Hillingdon Press, Uxbridge 1976.Google Scholar
  12. 13.
    Eshelby, J. D., The continuum theory of lattice defects, in: Solid State Physics vol.3 (Ed. F. Sietz and D. Turnbull ), Academic Press, New York, 1956.Google Scholar
  13. 14.
    Sanders, J. L.: On the Griffith-Irwin fracture theory, Journal of Applied Mechanics, 27, (1960), 352–353.CrossRefMATHGoogle Scholar
  14. 15.
    Rice,J. R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, 35, (1968), 379–386.CrossRefGoogle Scholar
  15. 16.
    Günther, W.: Ober einige Randintegrale der Elastomechanik Abhandlungen, Braunschweiger Wissenschaftliche Gesellschaft, 14, (1962), 53–72.MATHGoogle Scholar
  16. 17.
    Knowles, J. K. and Sternberg, E.: On a class of conservation laws in linearized and finite elasticity, Archive of Rational Mechanics and Analysis, 44, (1972), 187–211.CrossRefMATHMathSciNetGoogle Scholar
  17. 18.
    Matczyliski, M., Sokolowski, M. and Zorski H.: Forces and moments on distributed defects and cracks, in: Defects and fracture (Ed. by Sih, G. C. and Zorski, H. ), Martinus Nijhoff Publisher, The Hague, Boston, 1982, 109–119.CrossRefGoogle Scholar
  18. 19.
    Griffith, A. A.: The phenomena of rupture and flow in solids, Philosophical Transactions, Royal Society of London, Series A 221, (1921), 163–198.Google Scholar
  19. 20.
    Irwin, G. R.: Analysis of stress and strains near the ends of a crack traversing a plate, Journal of Applied Mechanics, Trans. ASME, 24, (1957), 361–364.Google Scholar
  20. Irwin, G. R.: Fracture dynamics, in: Fracturing of metals (Ed. F. Jonassen et. al. ), American Society of Metals, Cleveland, 1947, 147–166.Google Scholar
  21. 22.
    Orowan, E.: Fracture and strength of solids, Report on Progress in Physics, Physics Society, London, 12, (1949), 185–232.Google Scholar
  22. 23.
    Barenblatt, G. I.: The formation of equilibrium crack during brittle fracture, Journal of Applied Mathematics and Mechanics, (Prikl. Mat. Mech.), 23, (1959), 434–444.MathSciNetGoogle Scholar
  23. 24.
    Barenblatt, G. I.: Mathematical theory of equilibrium cracks in brittle fracture, Advances in Applied Mathematics, VII, Academic Press, New York, (1962), 55–129.Google Scholar
  24. 25.
    Dugdale, D. S.: Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8, (1960), 100–104.CrossRefGoogle Scholar
  25. 26.
    Wells, A. A.: Unstable crack propagation in metals, cleavage and fast fracture, in: Proceedings of the crack propagation Symposium, Cranfield 1962/England, 1962, 210–230.Google Scholar

Copyright information

© Springer-Verlag Wien 1990

Authors and Affiliations

  • M. Matczynski
    • 1
  1. 1.Polish Academy of SciencesWarsawPoland

Personalised recommendations