Multidisciplinary Optimization Procedure in Design Processes

— Basic Ideas, Aims, Scope, Concepts —
  • H. A. Eschenauer
Conference paper
Part of the International Centre for Mechanical Sciences book series (CISM, volume 425)


An important goal of engineering activities is to improve existing and to develop novel technical designs, structural assemblies, and components. The “best-possible” or “optimal” structures / systems are the ones that correspond to the designer’s desired concepts, meeting at the same time the multidisciplinary requirements and/or specifications referring to manufacturing, assembling, operation, etc. In comparison with the “trial-and-error” approaches still used in the engineering environment and provided with considerable uncertainties, the determination of optimal solutions especially for large-scale and complex structures by means of continuously improved algorithms and strategies, so-called “emerging methods” is more reliable and efficient. These procedures will be a need in the design process in future, and they are already increasingly entering industrial practice. In the introductory chapter, three applications in Topology, Product and Process, and Robust Multicriteria Optimization are described.


Residual Stress Design Variable Topology Optimization Robust Design Noise Factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abadie, J., and Carpentier, J., (1969). Generalization of the Wolfe Reduced Gradient Method to be Case of Nonlinear Constraints. In Fletcher, R.: Optimization, Academic Press, New YorkGoogle Scholar
  2. Adelman, H.M., and Haftka, T., (1984). Sensitivity Analysis for Discrete Structural Systems — A Survey, NASA-TM-86333Google Scholar
  3. Allaire, G., and Kohn, R.V., (1993). Optimal design for minimum weight and compliance in plane stress using extremal microstructures, Eur. J Mech., A/Solids, 12, No. 6: 839–878MathSciNetMATHGoogle Scholar
  4. Ashley, S., (1992). DARPA initiative in concurrent engineering, Mechanical Engineering, 54: 45–57Google Scholar
  5. Atrek, E., (1989). SHAPE: A Program for Shape Optimization of Continuum Structures, Proc. First Int. Conf.: Opti’89, Comp. Mechanics Publications, Springer, Berlin, 135–144Google Scholar
  6. Atrek, E., (1993). SHAPE: A Structural Shape Optimization Program. In Hörnlein, H., and Schittkowski, K. (eds.), Software Systems for Structural Optimization, Vol. 110 International Series of Numerical Mathematics, Birkhäuser, Basel, 229–249Google Scholar
  7. Atrek, E., and Agarwal, B., (1992). Shape Optimization of Structural Design. In Billingsley, K.R., Brown Ill., H.U., and Derohanes, E. (eds.), Scientific Excellence in Supercomputing — The IBM 1990 Contest Prize Papers, University of Georgia, Athens, GA, Baldw in PressGoogle Scholar
  8. Atrek, E., and Kodali, R., (1989). Optimum Design of Continuum Structures with SHAPE. In Prasad, B. (ed.), CAD/CAM Robotics and Factories of the Future, Vol. 2, Proc. of the 3rd International Conference CARS and FOF ‘88, Springer, Berlin, 11–15Google Scholar
  9. Banichuk, N.V., (1993). Shape Design Sensitivity Analysis for Optimization Problems with Local and Global Functionals, Mech. Struct., and Mach., 21 (3): 375–397MathSciNetCrossRefGoogle Scholar
  10. Barthelemy, J.F.M., and Haftka, R.T., (1993), Approximation concepts for optimum structural design — a review, J. Structural Optimization, Vol. 5: 129–144CrossRefGoogle Scholar
  11. Beer, R., (1996). Multidisziplinäre Optimierung von zylinderförmigen Gußbauteilen mit mehreren Zielvorstellungen, Dissertation Universität-GH Siegen, TIM-Forschungsbericht Nr. T11–08. 96Google Scholar
  12. Beer, R., Eschenauer, H.A., Lautenschlager, U., and Hillmer, P., (1994). On the Modeling and Optimization of a Pressure Gas Insulation Component – A Multidisciplinary Optimization Task, 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Panama City, Sept. 7–9, 1994, A Collection of Technical Papers, Part 2, American Institute of Aeronautics and Astronautics AIAA, ISBN 1–56347–097–7, 1994, 423 – 433Google Scholar
  13. Bendsee, M.P., (1994). Methods for the Optimization of Structural Topology, Shape and Material, Springer, BerlinGoogle Scholar
  14. Bendsee, M.P., and Kikuchi, N., (1988). Generating optimal topologies in structural design using a homogenization method, Corn. Meth. Appl. Mech. Eng. 71: 197–224CrossRefGoogle Scholar
  15. Bendsee, M.P., Diaz, A., and Kikuchi, N., (1993). Topology and Generalized Layout Optimization of Elastic Structures. In Bendsee, M.P., and Mota Soraes, C.A. (eds.), Topology Design of Structures, Kluwer Academic Publishers, Dordrecht, 159–205CrossRefGoogle Scholar
  16. Berchtold, G., and Klenner, J., (1992). The integrated design and manufacturing of composite structures for aircraft using an advanced tape laying technology, DGLR-Jahrestagung, Bremen/Germany, MBBBericht S-PUB-491Google Scholar
  17. Bloebaum, C.L., Hajela, P., and Sobieszczanski-Sobieski, J., (1990). Nonhierarchic system deconrtposition in structural optimization, Proc. Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, San Francisco, CA, Sept. 24–26, 1990Google Scholar
  18. Bourgat, J.F., (1973). Numerical Experiments of the Homogenisation Method for Operators with Periodic Coefficients, Lecture Notes in Mathematics 704, Springer, Berlin, 330–356Google Scholar
  19. Box, G., Hunter, W., and Hunter, J., (1978). Statistics for Experimenters, Wiley Inc., New YorkMATHGoogle Scholar
  20. Bremicker, M., (1989). Dekompositionsstrategie in Anwendung auf Probleme der Gestaltsoptimierung, Dissertation Universität-GH Siegen. VDI-Fortschrittsbericht, Reihe 1, Nr. 173, VDI, DüsseldorfGoogle Scholar
  21. Bremicker, M., and Eschenauer, H.A., (1989). Applications of a decomposition technique for treating a shape optimization problem. In Advances in Design Automation, Vol. II, ASME Publ. DE-Vol. 19–2, 1–6Google Scholar
  22. Courant, R., and Hilbert, D., (1968). Methods of Mathematical Physics I, Interscience Publishers Inc., New YorkGoogle Scholar
  23. Dollyhigh, S.M., and Sobieszczanski-Sobieski J., (1990). Recent experience with multidisciplinary analysis and optimization in advanced aircraft design, Proceedings of the NASA Symposium on Multidisciplinary Analysis and Optimization, 404–411Google Scholar
  24. Eifler, D., Löhe, D., and Scholtes, B., (1991). Residual stresses and fatigue of metallic materials. In Hauk, V., Hougardy, H.P., and Macherauch, E. (eds.), Residual stresses - measurement, calculation, evaluation, DGM Informationsgesellschaft, OberurselGoogle Scholar
  25. Erler, J., (1937). Studies of casting stresses in chilled iron rolls, The Iron Age. 45–51, 81Google Scholar
  26. Eschenauer, H., Koski, J., and Osyczka, A. (1990). Multicriteria Design Optimization. Procedures and Applications, Springer, Berlin, HeidelbergGoogle Scholar
  27. Eschenauer, H.A., (1989), The ‘Three Columns’ for Treating Problems in Optimum Structural Design. In Bergmann, H.W. (ed.). Optimization: Methods and Applications, Possibilities and Limitations, Springer, Berlin, Heidelberg, New York, 1–21CrossRefGoogle Scholar
  28. Eschenauer, H.A., (1992). Multidisciplinary Modeling and Optimization in Design Processes, ZAMM - Z. angew. Math. Mech. 72, (6): T428 - T447MathSciNetGoogle Scholar
  29. Eschenauer, H.A., (1998). Development of Highly Precise Radio Telescopes — a typical Multidisciplinary Problem. In Belegundu, A.D., and Mistree, F. (eds.), Optimization in Industry — 1997, ASME, New York, 13–30Google Scholar
  30. Eschenauer, H.A., and Weinert, M., (1993). Structural techniques as a mathematical tool for finding optimal shapes of complex shell structures. In Gianessi, F. (ed.), Non-Smooth Optimization Methods and Applications. Gordon and Breach Science Publishers, SwitzerlandGoogle Scholar
  31. Eschenauer, H.A., and Schumacher, A., (1993a). Bubble Method: A special strategy for finding best possible initial designs, Proc. of the 1993 ASME Design Technical Conferences, 19th Design Automation Conference, Vol 65–2, 437–443Google Scholar
  32. Eschenauer, H.A., and Schumacher, A., (1993b). Possibilities of Applying Various Procedures of Topology Optimization to Components subject to Mechanical Loads, ZAMM— Z. angew. Math. Mech., 73: T392 - T394MATHGoogle Scholar
  33. Eschenauer, H.A., and Schumacher, A., (1997). Topology and shape optimization procedures using hole positioning criteria — theory and applications. In Rozvany, G.I.N. (ed.), Topology Optimization in Structural Mechanics, Volume 374 of CISM Courses and Lectures, Springer, WienGoogle Scholar
  34. Eschenauer, H.A., and Weinert, M., (1994). Optimal layouts of complex shell structures by means of decomposition techniques, Proc. of 4th AIAA/USAF/NASA/OAI Symp. on Multidisciplinary Analysis and Optimization, Cleveland, OH. AIAA 1994, 999–1007Google Scholar
  35. Eschenauer, H.A., Kobelev, V.V., and Schumacher, A., (1994). Bubble method for topology and shape optimization of structures, J. Struct. Opt. 8: 42–51CrossRefGoogle Scholar
  36. Eschenauer, H.A., Geilen, J., and Wahl, H.J., (1993). SAPOP–An Optimization Procedure for Multicriteria Structural Design. In Schittkowski, K., and Hörnlein, H. (eds.), Software Systems for Optimization, Birkhäuser, Basel, ISNM-Volume, 207–228CrossRefGoogle Scholar
  37. Eschenauer, H.A., and Beer, R., (1998). Multidisciplinary optimization of cast components regarding process characteristics, J. Structural Optimization, 16: 212–225Google Scholar
  38. Eschenauer, H.A., Mattheck, C., and Olhoff, N., (eds.) (1991). Engineering Optimization in Design Processes, Lecture Notes in Engineering, Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  39. Etman, P., (1997). Optimization of Multibody Systems using Approximation Concepts, Ph.D.-Thesis, Universiteitsdrukkerij TU EindhovenGoogle Scholar
  40. Fleury, C., and Schmit, L.A., (1980). Dual Methods and Approximation Concepts in Structural Synthesis, NASA Contractor Report 3226Google Scholar
  41. Geißendörfer, K., (1992). CALTA-GII development for an integrated design and manufacturing system in aircraft industry, ECU European CATIA Users Association, Annual Conference, Mont PellierGoogle Scholar
  42. Guan, J., and Sahm, P.R., (1992). Numerische Untersuchung der thermischen Spannungen in realen 3D-Gußbauteilen, Giesserei 79: 318–322Google Scholar
  43. Haug, E.J., and Arora, J.S., (1978). Design Sensitivity Analysis of Elastic Mechanical Systems, Com. Meth. Appl. Mech. Eng. 15: 35–62CrossRefMATHGoogle Scholar
  44. Haug, E.J., Choi, K.K., and Komkov, V., (1986). Design Sensitivity Analysis of Structural Systems, Academic Press Inc., OrlandoMATHGoogle Scholar
  45. Kneppe, G., (1986). Direkte Lösungsstrategien zur Gestaltsoptimierung von Flächentragwerken, Dissertation, Universität-GH Siegen, VDI-Fortschrittsbericht, Reihe 1, Nr. 135, VDI, DüsseldorfGoogle Scholar
  46. Lautenschlager, U., Eschenauer, H.A., and Mistree, F., (1999). Design-of-Experiments Methods and their Application to Robust Multicriteria Optimization Problems, ZAMM Journal Applied Mathematics and Mechanics, Vol. 79, Supplement l: GAMM 98 Annual Meeting, MinisymposiaGoogle Scholar
  47. Lawson, M., and Karandikar, H.M., (1994). A Survey of Concurrent Engineering, J. Concurrent Engineering — Research and Applications, Vol 2 (1): 1–6CrossRefGoogle Scholar
  48. Mack, W., and Gamer, U., (1988). Zur Berechnung der Wärmespannungen beim Abkühlen thermisch beanspruchter elastisch-plastischer Bauteile, Forschung im Ingenieurwesen 54: 48–52CrossRefGoogle Scholar
  49. Megahed, M.M., (1990), Elastic-plastic behaviour of a thick-walled tube with general nonlinear hardening properties, Int. J. Mech. Sci., 32: 551–563CrossRefGoogle Scholar
  50. Montgomery, D., (1991). Design and Analysis of Experiments, Third Ed., John Wiley and Sons, New York Papalambros, P.Y., and Chirehdast, M., (1990), An integrated environment for structural configuration designs, J. Eng. Design, I (1): 73–96Google Scholar
  51. Parkinson, A., and Wilson, M., (1986). Development of a Hybrid SQP-GRG Algorithm for Constrained Nonlinear Programming, Proceedings of the ASME Design Engineering Technical Conference, Columbus, Ohio, Oct. 5–8, 1986Google Scholar
  52. Parsaei, H.R., and Sullivan, W.G., (eds.) (1993). Concurrent Engineering — Contemporary Issues and Modern Design Tools, Chapman and Hall, London, Glasgow, New YorkGoogle Scholar
  53. Powell, M.J.D., (1982). VMCWD: A FORTRAN Subroutine for Constrained Optimization, University of Cambridge, Report DANTP 1982/NA4Google Scholar
  54. Reinhardt, H.J., Seiffarth, F., and Hào, D.N., (1993). Approximate Solutions of Ill-posed Cauchy Problems for Parabolic Differential Equations. In Anger, G. (ed.), Inverse Problems: Principles and Applications in Geophysics, Technology and Medicine, 284–298Google Scholar
  55. Roux, W.J., Stander, N., and Haftka, R.T., (1996). Response Surface Approximations for Structural Optimization, Proc. Sixth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, 565–578Google Scholar
  56. Sahm, P.R., and Hansen, P.N., (1984). Numerical simulation and modeling of casting and solidification processes for foundry and cast-house, CIATF, Zurich/SwitzerlandGoogle Scholar
  57. Schimöller, H., (1990). Analytische Behandlung von Eigenspannungszustanden auf der Grundlage der Elastizitätstheorie, VDI-Fortschrittsberichte, Reihe 18: Mechanik/Bruchmechanik, 88Google Scholar
  58. Schoofs, A.J.G., (1987). Experimental Design and Structural Optimization, Ph.D.-thesis, Febodruk, Enschede/The NetherlandsGoogle Scholar
  59. Schoofs, A.J.G., Klink, M.B.M., and van Campen, D.H.. (1992). Approximation of structural optimization problems by means of designed numerical experiments, J. Structural Optimization, Vol. 4: 206–212CrossRefGoogle Scholar
  60. Schumacher, A., (1995). Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochpositionierungskriterien, Ph.D.-Thesis, University of Siegen, TIM-Report T09–11. 95Google Scholar
  61. Schuhmacher, G., (1995). Multidisziplinäre, fertigungsgerechte Optimierung von Faserverbund-Flächentragwerken, Uni-GH Siegen: Dissertation, TIM-Bericht Nr. T07–03. 95Google Scholar
  62. Sjöström, S., (1983). Berechnung der Abschreckeigenspannungen in Stahl. In Macherauch, E., and Hauk, V. (eds.), Eigenspannungen. Entstehung–Messung–Bewertung, Vol. 1. DGM Informationsgesellschaft Oberursel, 155–189Google Scholar
  63. Sluzalek, A., (1992). Introduction to nonlinear thermodynamics, theory and finite element solutions, Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  64. Sobieszczanski-Sobieski, J., (1988). Optimization by decomposition: a step from hierarchic to non-hierarchic systems. In Proc. Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, VA, Sept. 28–30, 1988Google Scholar
  65. Sobieszczanski-Sobieski, J., (1989). Multidisciplinary optimization for engineering systems. In Bergmann, H.W. (ed.), Optimization: Methods and Applications, Possibilities and Limitations, Springer, Berlin, Heidelberg, New York, 42–62CrossRefGoogle Scholar
  66. Stadler, W., (1988). Multicriteria Optimization in Engineering and in the Sciences, Plenum Press, New York, LondonGoogle Scholar
  67. Svanberg, K., (1987). The method of moving asymptotes — A new method for structural optimization, International Journal for Numerical Methods in Engineering 24: 259–373MathSciNetCrossRefGoogle Scholar
  68. Taguchi, G., (1986). Introduction to Quality Engineering: Designing Quality into Products and Processes, Kraus International Publications, White Plains, N.YGoogle Scholar
  69. Upadhya, G., Banerjee, D.K., Stefanescu, D.M., and Hill, J.L., (1990). Heat transfer-solidification of structural transitions: chill formation in grey iron, AFS Trans. 90: 699–707Google Scholar
  70. Vanderplaats, G,N., Yang, Y.J., and Kim, D.S., (1990). Sequential linearization method for multilevel optimization, AIAA J. 28: 290–295CrossRefADSGoogle Scholar
  71. van Houten, M.H., (1988). Function Approximation Concepts for Multidisciplinary Design Optimization, Ph.D.-Thesis, Universiteitsdrukkerij TU EindhovenGoogle Scholar
  72. VDI-Guideline 2235, ( 1987 ). Wirtschaftliche Entscheidungen beim Konstruieren (Economic Decisions in Design Processes). VDI, DüsseldorfGoogle Scholar
  73. Weck, M., Du Maire, E., and Vonderhagen, H., (1992). Optimierung von Gussbauteilen im Werkzeugmaschinenbau, Giesserei 79: 11–20Google Scholar
  74. Wiese, J.W., and Dantzig, J.A., (1988). Modeling stress development in grey iron castings. In Giamei, A.F., Abbaschian, G.J., and Bayuzick, R.J. (eds.), Solidification processing of eutectic alloys. The Metallurgical Society, 163–174Google Scholar
  75. Wolfersdorf, (1994). Inverse und schlecht gestellte Probleme, Akademie-Verlag, BerlinMATHGoogle Scholar
  76. Yoshimura, M., and Takeuchi, A., (1994), Concurrent Optimization of Product Design and Manufacturing on Information of User’s Needs, J. Concurrent Engineering — Research and Applications, Vol 2 (1): 33–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • H. A. Eschenauer
    • 1
  1. 1.FOMAASUniversity of SiegenGermany

Personalised recommendations