Skip to main content

Backtrack Method with Applications to Dso

  • Chapter

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 373))

Abstract

The backtrack discrete mathematical programming method is described giving a detailed flow chart. If a continuous mathematical method is used and discrete series of values are given for variables, the discrete optima can be determined by a complementary discretization which is also explained. Optimum design problems of stiffened and cellular plates, tubular trusses, welded box beams and welded steel silos are treated. In these applications the discrete variables appear in various forms. In the cost function the material and fabrication (welding) costs are formulated. It is shown that the optimum number of ribs in stiffened or cellular plates depends on the fabrication cost factor. In the optimization of trusses it is verified that the use of the Euler buckling formula gives unsafe solutions and the optimum geometry depends on the profile shape of compression members. In the multiobjective optimization of welded box beams the deflection is formulated as the third objective function in addition to the cost and weight functions. The systematic incorporation of the cost analysis in the optimization procedure is shown in the case of a welded steel silo. The detailed strength and cost calculation is carried out for the main structural parts of a silo for several discrete values of the height/diameter ratio to find the optimum one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walker,R.J.: An enumerative technique for a class of combinatorical problems, in: Proc. of Symposia in Appl. Math. Amer.Math.Soc.Providence, R.I. 10(1960), 91–94.

    Google Scholar 

  2. Golomb,S.W. and L.D.Baumert: Backtrack programming, J. Assoc. Computing Machinery, 12 (1965), 516–524.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bitner,J.R. and E.M.Reingold: Backtrack programming techniques, Communications of ACM, 18 (1975), 651–656.

    Article  MATH  Google Scholar 

  4. Lewis,A.D.M.: Backtrack programming in’welded girder deign, in: Proc. 5th Annual SHARE-ACM-IEEE Design Automation Workshop, Washington, 1968, 28/1–28/9.

    Google Scholar 

  5. Annamalai,N.: Cost optimization of welded plate girders. Dissertation, Purdue Univ. Indianapolis, Ind. 1970.

    Google Scholar 

  6. Farkas,J. and L.Szabó: Optimum design of beams and frames of welded I-sections by means of backtrack programming. Acta Techn. Hung. 91(1980),121–135

    Google Scholar 

  7. Knuth,D.E.: Estimating the efficiency of backtrack programs. Mathematics of Computation 29 (1975), 121–136.

    Article  MathSciNet  MATH  Google Scholar 

  8. Farkas,J.: Optimum Design of Metal Structures. Akadémiai Kiadó, Budapest, Ellis Horwood, Chichester, 1984.

    Google Scholar 

  9. Järmai,K.: Optimal design of welded frames by complex programming method. Publ.Techn.Univ.Heavy Ind. Ser.C. Machinery, 37 (1982), 79–95.

    Google Scholar 

  10. Farkas,J.: Cost comparisons of plates stiffened on one side and cellular plates. Welding in the World 30 (1992), 132–137.

    Google Scholar 

  11. Pahl,G.and K.H. Beelich: Kostenwachstumgesetze nach Aenlichkeitsbeziehungen fir Schweissverbindungen, in: VDI-Bericht Nr. 457.1982, Diisseldorf, 129–141.

    Google Scholar 

  12. Farkas,J.: Discussion to “Simplified analysis for cellular structures” by Evans,H.R. and Shanmugam,N.E.: J,Struct. Eng. ASCE 111 (1985), 2268–2271.

    Google Scholar 

  13. Timoshenko,S. and S. Woinowsky-Krieger: Theory of plates and shells. 2“ ed. McGraw Hill, New York-Toronto-London, 1959.

    Google Scholar 

  14. Usami,Ts. and Y.Fukumoto: Local and overall buckling of welded box columns. J.Struct.Div. Proc. ASCE (1982), 525–541.

    Google Scholar 

  15. Zhou,J.L. and A.Tits: User’s guide for FSQP Version 3.0: a Fortran code for solving optimization problems. Systems Research Center, University of Maryland, Techn. Report SRC-TR-90–60 rlf, College Park. 1992.

    Google Scholar 

  16. Farkas,J.: Minimum cost design of tubular trusses considering buckling and fatigue constraints, in: Tubular Structures. 3`’ Int. Symposium, 1989, Lappeenranta, E. Niemi, P. Mäkeläinen (eds), Elsevier, London, 1990, 451–459.

    Google Scholar 

  17. Farkas,J.: Techno-economic considerations in the optimum design of welded structures. Welding in the World 29 (1991), 295–300.

    Google Scholar 

  18. Farkas,J. and K.Järmai: Minimum cost design of laterally loaded welded rectangular cellular plates. In Structural Optimization ‘83 World Congress, Rio de Janeiro. Proc. Vol. 1. 1993, 205–212.

    Google Scholar 

  19. Ott,H.H. and V. Hubka: Vorausberechnung der Herstellkosten von Schweisskonstruktionen. (Fabrication cost calculation of welded structures), in: Proc.Int.Conference on Engineering Design ICED, 1985. Hamburg. Ed. Heurista, Zürich, 1985, 478–487.

    Google Scholar 

  20. COSTCOMP, Programm zur Berechnung der Schweisskosten. Deutscher Verlag fir Schweisstechnik, Düsseldorf, 1990.

    Google Scholar 

  21. Bodt,H.J.M.: The global approach to welding costs. The Netherlands Institute of Welding, The Hague, 1990.

    Google Scholar 

  22. American Petroleum Institute: API Bulletin on Design of flat plate structures. Bul. 2V, 1st, ed. 1987.

    Google Scholar 

  23. Eurocode 3. (EC3) Design of steel structures. Part 1.1. Brussels, CEN - European Committee for Standardization. 1992.

    Google Scholar 

  24. Khot,N.S. and L.Berke: Structural optimization using optimality criteria methods, in: New directions in optimum structural design. Eds. Atrek,E., Gallagher,R.H. et al. Wiley and Sons, Chichester, New York, etc.1984,.47–74.

    Google Scholar 

  25. Vanderplaats,G.N. and F.Moses: Automated design of trusses for optimum geometry. Journal of Structural Division Proc. ASCE 98 (1972), 671–690.

    Google Scholar 

  26. Saka,M.P.: Shape optimization of trusses. Journal of Structural Division Proc. ASCE 106 (1980), 1155–1174.

    Google Scholar 

  27. Amir,H.M. and T.Hasegawa: Shape optimization of skeleton structures using mixed-discrete variables. Structural Optimization 8 (1994), 125–130.

    Article  Google Scholar 

  28. Farkas,J.: Optimum design of circular hollow section beam-columns, in: Proceedings of the Second International Offshore and Polar Engineering Conference, San Francisco, 1992. ISOPE, Golden, Colorado, USA. 494–499.

    Google Scholar 

  29. Saka,M.P.: Optimum design of pin jointed steel structures with practical applications. Journal of Structural Division Proc. ASCE 116 (1990), 2599–2620

    Article  Google Scholar 

  30. Farkas,J.and K.Jârmai: Savings in weight by using CHS or SHS instead of angles in compressed struts and trusses, in: Tubular Structures VI. Proceedings of the 6th International Symposium, Melbourne, 1994. Eds. Grundy,P.,Holgate,A.,Wong,B. Balkema, Rotterdam–Brookfield. 417–422.

    Google Scholar 

  31. Dutta,D. and K-G.Wiürker: Handbuch Hohlprofile in Stahlkonstruktionen. Köln, TÜV Rheinland GmbH, 1988.

    Google Scholar 

  32. Wardenier,J., Kurobane,Y. et al.: Design guide for circular hollow section joints under predominantly static loading. Köln, TÜV Rheinland, 1991.

    Google Scholar 

  33. Rondal,J., Würker, K-G. et al.: Structural stability of hollow sections. Köln, TÜV Rheinland. 1992.

    Google Scholar 

  34. Saka,M.P.. Optimum geometry design of roof trusses by optimality criteria method. Computers and Structures 38 (1991), 83–92.

    Article  MATH  Google Scholar 

  35. Koumousis,V.K.. Lay-out and sizing design of civil engineering structures in accordance with the Eurocodes, in: Topology Design of Structures. Eds. Bendsoe,M.P. and C.A. Mota Soares. Dordrecht-Boston-London: Kluwer:1992, 103116.

    Google Scholar 

  36. Packer,J.A., J. Wardenier et al.. Design guide for rectangular hollow section joints under predominantly static loading. Köln: TÜV Rheinland, 1992.

    Google Scholar 

  37. Hasegawa,A.,H. Abo et al.. Optimum cross-sectional shapes of steel compression members with local buckling, in: Proc. JSCE Structural Engineering/ Earthquake Engineering 2(1985),121–129.

    Google Scholar 

  38. Eschenauer,H., Koski,J. and Osyczka,A., Multicriteria Design Optimization. Springer, Berlin, etc. 1990.

    Book  MATH  Google Scholar 

  39. Koski, J.: Bicriterion optimum design method for elastic trusses. Acta Polytechnica Scandinavica, Mechanical Engineering Series No.86. Helsinki, 1984.

    Google Scholar 

  40. Osyczka,A.: Multicriterion Optimization in Engineering. Ellis Horwood, Chichester, 1984.

    Google Scholar 

  41. Farkas,J.: Fabrication aspects in the optimum design of welded structures. Structural Optimization 4 (1991), 51–58.

    Article  Google Scholar 

  42. Jârmai,K.: Single-and multicriteria optimization as a tool of decision support system. Computers in Industry 11 (1989), 249–266.

    Article  Google Scholar 

  43. Jârmai,K.: Application of decision support system on sandwich beams verified by experiments. Computers in industry 11 (1989), 267–274.

    Article  Google Scholar 

  44. Jârmai,K.: Decision support system on IBM PC for design of economic steel structures, applied to crane girders. Thin-walled Structures 10 (1990), 143–159.

    Article  Google Scholar 

  45. Farkas,J. and K.Jârmai: Multiobjective optimal design of welded box beams. Microcomputers in Civil Engng 10 (1995), 249–255.

    Article  Google Scholar 

  46. Martens,P. ed.: Silo-Handbuch. Berlin, Ernst and Sohn, 1988.

    Google Scholar 

  47. Gaylord,E.H.jr. and Gaylord,Ch.N.: Design of steel bins for storage of bulk solids. Prentice Hall,Inc. Englewood Cliffs, New Jersey, 1984.

    Google Scholar 

  48. Trahair,N.S.,Abel,A. et al.: Structural design of steel bins for bulk solids. Australian Institute of Steel Construction, Sydney, 1983.

    Google Scholar 

  49. Teng,J.G. and J.M.Rotter: Recent research on the behaviour and design of steel silo hoppers and transition junctions. Journal of Constructional Steel Research, 23 (1992), 313–343

    Article  Google Scholar 

  50. Farkas,J.: Discussion to “Elastic behaviour of isolated column-supported ringbeams” by Rotter, J.M.- J. Constructional Steel Research 4(1984),235–252. J.C.S.R 5 (1985), 239–242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Farkas, J., Jármai, K. (1997). Backtrack Method with Applications to Dso. In: Gutkowski, W. (eds) Discrete Structural Optimization. International Centre for Mechanical Sciences, vol 373. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2754-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2754-4_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82901-1

  • Online ISBN: 978-3-7091-2754-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics