Discrete Structural Optimization: Design Problems and Exact Solution Methods

  • W. Gutkowski
Part of the International Centre for Mechanical Sciences book series (CISM, volume 373)


In this chapter three groups of problems are discussed. The first one relates to the structural problems for which discrete variables are assumed. Most known designs of this kind are those in which the variables are selected from given finite sets of values. In most cases these sets are lists of prefabricated structural and machine elements available on the market. Also some other more complex problems of DSO are discussed. There are designs in which minimum cost has to be achieved by finding appropriate number of supports and their locations and /or number and locations of linking groups, collecting structural members of the same parameters. The second group of problems deals with basic preliminaries of discrete mathematics applied in last part of the chapter containing four basic, exact solution methods. There are: Cutting-Plane Algorithm, Branch-and-Bound Method, Dynamic Programming and Controlled Enumeration Method. All these methods are illustrated with examples ta hen from listed literature.


Design Variable Design Problem Minimum Weight Structural Member Discrete Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S. Arora, M.W. Huang and C.C. Hsieh, Methods for optimization of nonlinear problems with discrete variables: a review, Structural Optimization, 8, 1994, 69–85.CrossRefGoogle Scholar
  2. 2.
    J. Bauer and W. Gutkowski, Discrete Structural Optimization: A Review, In: N. Olhoff and G.I.N. Rozvany eds, First World Congress of Structural and Multidisciplinary Optimization, Pergamon, 1995, 901–908.Google Scholar
  3. 3.
    J. Bauer, W. Gutkowski and Z. Iwanow, A discrete method for lattice structures optimization, Engineering Optimization, 5, 1981, 121–128.CrossRefGoogle Scholar
  4. 4.
    J. Bauer, W. Gutkowski and Z. Iwanow, Optimum design of regular space structures, In: H. Nooshin, ed., Third International Conference on Space Structures, Elesevier, London, 1984, 672–676.Google Scholar
  5. 5.
    R. Bellman, Dynamic Programming, Princeton University Press, Princeton, N.J., 1957.MATHGoogle Scholar
  6. 6.
    A. Cella, K. Soosaar, Discrete variables in structural optimization In: R. M. Gallagher and O. C. Zienkiewicz, eds., Optimum Structural Design. Theory and Applications, Wiley, 1973, 201–222.Google Scholar
  7. 7.
    G.B. Dantzing, Discrete–variable extremum problems, Operai. Res., 5, 1953, 2, 266–277.CrossRefGoogle Scholar
  8. 8.
    N. Distefano, A. Rath, A dynamic programming approach to the optimization of elastic trusses. J. optimization Theory and Application, vol. 15, 1975, no 1, pp. 13–26.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    S. E. Dreyfus, Dynamic Programming and the Calculus of Variations, Academic Press, Inc. New York, 1965.Google Scholar
  10. 10.
    R. S. Garfinkel and G. L. Nemhauser, Integer Programming, Wiley, New York, 1972.MATHGoogle Scholar
  11. 11.
    R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bull. Amer. Soc. Math., 64, 1958, 275–278.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    H. Greenberg, Integer Programming, Academic Press, New York, 1971.Google Scholar
  13. 13.
    R. P. Grimaldi, Discrete and Combinatorial Mathematics, Addison - Wesley Publishing Company, 1986.Google Scholar
  14. 14.
    W. Gutkowski, Controlled enumeration with constraints variations in structural optimization, ZAMM, 72, 1992, T447 - T452.CrossRefMATHGoogle Scholar
  15. 15.
    W. Gutkowski and J. Bauer, eds., Discrete Structural Optimization, Proc. Symp. IUTAM, Zakopane, 30 August - 3 September, 1993, Springer, Berlin.Google Scholar
  16. 1.
    Ph. Trompette, J. L. Marcelin and C. Schmeding, Optimal Damping of Beams and Plates by Genetic Algorithms, 1–11.Google Scholar
  17. 2.
    J. Mottl, Optimization by the Voting Method of Structures Formed of Planar Constitutive Parts, 12–21.Google Scholar
  18. 3.
    M. Kishi, T. Kodera, Y. Iwao and R. Hosoda, Neuro-Optimizer, Its Application to Discrete Structural Optimization, 22–29.Google Scholar
  19. 4.
    P. Hajela and E. Lee, Genetic Algorithms in Topological Design of Grillage Structures, 30–39.Google Scholar
  20. 5.
    J. M4czynski, Optimization of a Linear Objective Function with Logical Constraints, 40–46.Google Scholar
  21. 6.
    K. Dems and Z. Mróz, On Optimal Structural Segmentation Problem, 47–60.Google Scholar
  22. 7.
    E. Schäfer, J. Geilen and H. A. Eschenauer, Application of Discrete Optimization Techniques to Optimal Composite Structures, 61–70.Google Scholar
  23. 8.
    A. Osyczka and J. Montusiewicz, A Random Search Approach to Multicriterion Discrete Optimization, 71–79.Google Scholar
  24. 9.
    A. O. Rasskazov and A. S. Dekhtjar, Optimal Arrangement of Ribs in Rib Reinforced Plates and Shells, 80–87.Google Scholar
  25. 10.
    J. Niczyj and W. Paczkowski, Application of the Expert System for Discrete Optimization of Space Truss, 88–97.Google Scholar
  26. 11.
    V. V. Toropov, V. L. Markin and H. Carlsen, Discrete Structural Optimization Based on Multipoint Explicit Approximations, 98–107.Google Scholar
  27. 12.
    E. P. Petrov, Optimization of Perturbation Parameters for Forced Vibration Stress Levels of Turbomachinery Blade Assemblies, 108–117.Google Scholar
  28. 13.
    G. I. N. Rozvany and M. Zhou, New Discretized Optimality Criteria Methods - State of the Art., 118–134.Google Scholar
  29. 14.
    G. I. N. Rozvany, M. Zhou, T. Birker and T. Lewinski, Discretized Methods for Topology Optimization, 135–147.Google Scholar
  30. 15.
    N. Yoshikawa and S. Nakagiri, Homology Design of Flexible Structure by the Finite Element Method, 148–157.Google Scholar
  31. 16.
    S. Shevchenko, Optimization of Structure and Development of Production System. 158–167.Google Scholar
  32. 17.
    W. Gutkowski, J. Bauer and Z. Iwanow, Support Number and Allocation for Optimum Structure, 168–177.Google Scholar
  33. 18.
    J. Korbicz and D. Ucinski, Sensor Allocation for State and Parameter Estimation of Distributed Systems, 178–189.Google Scholar
  34. 19.
    J. Holnicki-Szulc, F. Lopez-Almansa and A. Mackiewicz, Optimal Location of Piezoelectric Actuators, 190–199.Google Scholar
  35. 20.
    A. Citas and S. Stupak, Optimal Discrete Design of Elastoplastic Structures, 200–208.Google Scholar
  36. 21.
    S. Jendo and W. M. Paczkowski, Multicriterion Discrete Optimization of Space Trusses with Serviceability Constraints, 209–220.Google Scholar
  37. 22.
    M. Pyrz, Symbolic Computations Approach in Controlled Enumeration Methods Applied to Discrete Optimization, 221–227.Google Scholar
  38. 23.
    A. T. Janczura, General P-0 Method in Discrete Optimization of Frames, 228–240.Google Scholar
  39. 24.
    A. A. Belal, A More General Optimization Problem for Uniquely Decodable Codes, 241–250.Google Scholar
  40. 16.
    W. Gutkowski, J. Bauer and Z. Iwanow, Minimum weight design of space frames from a catalogue, In: K. Heki ed., Shells, Membranes and Space Frames Proc LASS Symposium, Elsevier, Amsterdam, Vol. 3, 1986, 229–236.Google Scholar
  41. 17.
    P. Hajela and C.J. Shin, Optimal Design of laminated Composites Using a Modified Mixed Integer and Discrete Programming algorithm, Computers and Structures, vol. 32, 1989, No 1, pp. 213–221.CrossRefMATHGoogle Scholar
  42. 18.
    Z. Iwanow, The method of enumeration according to the increasing value of the objective function, in the optimization of bar structures, Bull. de l’Acad. Polon. des Sc. Ser. des Sc. Techn., XXIX, 1981, 9–14.Google Scholar
  43. 19.
    Z. Iwanow, An algorithm for finding an ordered sequence of values of a discrete linear function, Control and Cybernetics, 19, 1990, 129–154.MathSciNetMATHGoogle Scholar
  44. 20.
    S. Jendo and W. M. Paczkowski, Multicriteria discrete optimization of large scale truss systems, Structural Optimization, 6, 1993, 238–249.CrossRefGoogle Scholar
  45. 21.
    I. N. Kalinin, Discrete optimization of space frame structure (in Russian), Stroit. Mech. i Rasczet Soor., No. 3, 1989, (183), 1–5.Google Scholar
  46. 22.
    A. A. Korbut and J. J. Finkelsztejn, Discrete Programming, (in Russian), Nauka, Moskva, 1969.Google Scholar
  47. 23.
    A. H. Land and A. G. Doig, An Automatic Method of Solving Discrete Programming Problems, Econometrica,28 1960, 497–520.Google Scholar
  48. 24.
    A. C. Palmer, Optimal Structure Design by Dynamic Programming, J. Struct. Div. ASCE, vol.94, 1968, No ST 8, 1887–1906.Google Scholar
  49. 25.
    M. Pyrz, Discrete optimization of geometrically nonlinear truss structures under stability constraints, Structural Optimization, 2, 1990, 125–131.CrossRefGoogle Scholar
  50. 26.
    M. Pyrz, Discrete optimization of trusses with stability constraints, Engineering Optimization, 16, 1990, 79–89.CrossRefGoogle Scholar
  51. 27.
    P.B. Thanedar and G.N. Vanderplaats, Survey of discrete variable optimization for structural design, J. Struct. Engng., 121, 1995, 2, 301–306.CrossRefGoogle Scholar
  52. 28.
    A. R. Toakley, Optimum design using available sections, Proc. ASCE J. Struct. Div., 94, 1968, 1219–1241.Google Scholar
  53. 29.
    G. N. Vanderplaats and P. B. Thanedar, A survey of discrete variable optimization for structural design, In: O. Ural, T. L. Wang eds., Proc. of the tenth ASCE Conference on Electronic Computation, Indianopolis, Indiana ASCE, 1991, 173–180.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • W. Gutkowski
    • 1
  1. 1.Institute of Fundamental Technological ResearchWarsawPoland

Personalised recommendations