Advertisement

On CAD-Integrated Structural Topology and Design Optimization

  • N. Olhoff
  • J. Rasmussen
  • M. P. Bendsøe
Part of the International Centre for Mechanical Sciences book series (CISM, volume 332)

Abstract

Concepts underlying an interactive CAD-based engineering design optimization system are developed, and methods of optimizing the topology, shape, and sizing of mechanical components are presented. These methods are integrated in the system, and the method for determining the optimal topology is used as a preprocessor for subsequent shape or sizing optimization. Some illustrative examples of application of the engineering design systems are presented.

Keywords

Design Variable Topology Optimization Structural Optimization Shape Optimization Master Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.A. Schmit, Structural Synthesis–Its Genesis and Development (AIAA Journal 20, pp. 992–1000, 1982)CrossRefGoogle Scholar
  2. [2]
    N. Olhoff and J.E. Taylor, On Structural Optimization (J. Appl. Mech. 50, pp. 1134–1151, 1983)CrossRefMathSciNetGoogle Scholar
  3. [3]
    H.A. Eschenauer, P.U. Post and M. Bremicker, Einsatz der Optimierungsprozedur SAPOP zur Auslegung von Bauteilkomponenten (Bauingenieur 28, pp. 2–12, 1988)Google Scholar
  4. [4]
    P. Bartholomew and A.J. Morris, STARS: A Software Package for Structural Optimization (in: Proc. Int. Symp. Optimum Structural Design, Univ. of Arizona, USA, 1981)Google Scholar
  5. [5]
    J. Sobieszanski-Sobieski and J.L. Rogers, A Programming System for Research and Applications in Structural Optimization (in: E. Atrek et. al.: New Directions in Optimum Structural Design, pp. 563–585, Wiley, Chichester, 1984)Google Scholar
  6. [6]
    C. Fleury and V. Braibant, Application of Structural Synthesis Techniques (in: C.A. Mota Soares: Preprints NATO/NASA/NSF/USAF Conf. Computer Aided Optimal Design, Troia, Portugal, 1986, Vo1. 2, pp. 29–53, Techn. Univ. Lisbon, 1986)Google Scholar
  7. [7]
    B. Esping and D. Holm, Structural Shape Optimization Using OASIS (in: G.I.N. Rozvany and B.L. Karihaloo: Structural Optimization, Proc. IUTAM Symp., Melbourne, Australia, 1988, pp. 93–101, Kluwer, Dordrecht, 1988)Google Scholar
  8. [8]
    R.T. Haftka and B. Prasad, Programs for Analysis and Resizing of Complex Structures (Computers and Structures 11, pp. 323–330, 1979)CrossRefGoogle Scholar
  9. [9]
    G. Kneppe, W, Hartzheim and G. Zimmermann, Development and Application of an Optimization Procedure for Space and Aircraft Structures (in: H.A. Eschenauer and G. Thierauf: Discretization methods and structural Optimization–Procedures and Applications, Proc. of a GAMM-Seminar, Siegen, FRG, 1988, pp. 194–201, Springer-Verlag, Berlin, 1989)Google Scholar
  10. [10]
    L.X. Qian, Structural Optimization Research in China (in: Proc. Int. Conf. Finite Element Methods, Shanghai, China, pp. 16–24, 1982)Google Scholar
  11. [11]
    G. Lecina and C. Petiau, Advances in Optimal Design with Composite Materials (in: loc.cit.[6], Vol. 3, pp. 279–289])Google Scholar
  12. [12]
    J.S. Arora, Interactive Design Optimization of Structural Systems (in: loc. cit. [9], pp. 10–16)Google Scholar
  13. [13]
    J. Rasmussen, The Structural Optimization System CAOS (Structural Optimization, 2, pp. 109–115, 1990)CrossRefGoogle Scholar
  14. [14]
    J. Rasmussen, Collection of Examples, CAOS Optimization System, 2nd Edition (Special Report No. lc, Institute of Mechanical Engineering, Aalborg University, Denmark, 1990)Google Scholar
  15. [15]
    S. Kibsgaard, N. Olhoff and J. Rasmussen, Concept of an Optimization System (in: C.A. Brebbia and S. Hernandez: Computer Aided Optimum Design of Structures: Applications, pp. 79–88, Springer-Verlag, Berlin, 1989)Google Scholar
  16. [16]
    U. Ringertz, A. Branch and Bound Algoritm for Topology Optimization of Truss Structures (Engineering Optimization, 10, pp. 111–124, 1986)CrossRefGoogle Scholar
  17. [17]
    M.P. Bendsoe and N. Kikuchi, Generating Optimal Topologies in Structural Design Using a Homogenization Method (Comp. Meths. Appl. Mechs. Engrg. 71, pp. 197–224, 1988)CrossRefMathSciNetGoogle Scholar
  18. [18]
    M.P. Bendsoe, Optimal Shape Design as a Material Distribution Problem (Structural Optimization, 1, pp. 193–202, 1989)CrossRefGoogle Scholar
  19. [19]
    M.P. Bendsoe and H.C. Rodrigues, Integrated Topology and Boundary Shape Optimization of 2-D Solids, (Rept. No. 14, 31 pp. Mathematical Institute, Technical Univ. Denmark, 1989)Google Scholar
  20. [20]
    K. Suzuki and N. Kikuchi, A Homogenization Method for Shape and Topology Optimization (Comp. Meths. Appl. Mechs. Engrg., submitted, 1989)Google Scholar
  21. [21]
    K. Suzuki and N. Kikuchi, Generalized Layout Optimization of Shape and Topology in Three-Dimensional Shell Structures (Rept. No. 90–05, Dept. Mech. Engrg. and Appl. Mech., Comp. Mech. Lab., University of Michigan, USA, 1990)Google Scholar
  22. [22]
    N. Kikuchi and K. Suzuki, Mathematical Theory of a Relaxed Design Problem in Structural Optimization (Paper for 3rd Air Force/NASA Symp. Recent Advances in Multidisciplinary Analysis and Optimization, San Francisco, USA, Sept. 1990)Google Scholar
  23. [23]
    P.Y. Papalambros and M. Chirehdast, An Integrated Environment for Structural Configuration Design (J. Engrg. Design, 1, pp. 73–96, 1990)CrossRefGoogle Scholar
  24. [24]
    M. Bremicker, M. Chirehdast, N. Kikuchi and P.Y. Papalambros, Integrated Topology and Shape Optimization in Structural Design (Techn. Rept. UM-MEAM-DL-90–01, Design Laboratory, College of Engrg., Univ. of Michigan, USA, 1990)Google Scholar
  25. [25]
    M. Bremicker, Ein Konzept zur Integrierten Topologie — und Gestaltoptimierung von Bauteilen (in: H.H. Müller-Slany: Beiträge zur Maschinentechnik, pp. 13–39, Festschrift für Prof. H. Eschenauer, Research Laboratory for Applied Structural Optimization, University of Siegen, FRG, 1990)Google Scholar
  26. [26]
    J.M. Guedes and N. Kikuchi, Pre and Postprocessings for Materials based on the Homogenization Method with Adaptive Finite Element Methods (Rept., Dept. Mech. Engrg. and Appl. Mech., University of Michigan, USA, 1989)Google Scholar
  27. [27]
    J.M. Guedes and N. Kikuchi, Computational Aspects of Mechanics of Nonlinear Composite Materials (Rept., Dept. Mech. Engrg. and Appl. Mech., University of Michigan, USA, 1989)Google Scholar
  28. [28]
    C. Fleury and V. Braibant, Structural Optimization: A New Dual Method Using Mixed Variables (Int. J. Num. Meth. Engrg. 21, pp. 409–428, 1986)CrossRefMathSciNetGoogle Scholar
  29. [29]
    P. Pedersen, On Optimal Orientation of Orthotropic Materials (Structural Optimization, 1, pp. 101–106, 1989)CrossRefGoogle Scholar
  30. [30]
    P. Pedersen, Bounds on Elastic Energy in Solids of Orthotropic Materials (Structural Optimization, 2, pp. 55–63, 1990)CrossRefGoogle Scholar
  31. [31]
    G.I.N. Rozvany, Structural Layout Theory - the Present State of Knowledge (in: loc.cit. [5], Chapter 7)Google Scholar
  32. [32]
    P.Pedersen, A Unified Approach to Optimal Design (in: H. Eschenauer and N. Olhoff: Optimization Methods in Structural Design, Proc. Euromech–Colloquium 164, Univ. Siegen, FRG, 1982, pp. 182–187, Bibliographishes Institut, Mannheim, FRG, 1983)Google Scholar
  33. [33]
    V. Braibant and C. Fleury, Shape Optimal Design Using B-splines (Comp. Meths. Appl. Mech. Engrg. 44, pp. 247–267, 1984)CrossRefMATHGoogle Scholar
  34. [34]
    J.A. Bennett and M.E. Botkin, Structural Shape Optimization with Geometric Description and Adaptive Mesh Refinement (AIAA Journal 23, pp. 458–464, 1985)CrossRefGoogle Scholar
  35. [35]
    R.T. Haftka and R.V. Gandhi, Structural Shape Optimization–A Survey (Comp. Meths. Appl. Mech. Engrg. 51, pp. 91–106, 1986)CrossRefGoogle Scholar
  36. [36]
    Y. Ding, Shape Optimization of Structures: A Literature Survey (Computers and Structures 24, pp. 985–1004, 1986)CrossRefMATHMathSciNetGoogle Scholar
  37. [37]
    N. Olhoff, Multicriterion Structural Optimization via Bound Formulation and Mathematical Programming (Structural Optimization 1, pp. 11–17, 1989)CrossRefGoogle Scholar
  38. [38]
    K. Svanberg, The method of Moving Asymptotes–A new Method for Structural Optimization (Int. J. Num. Meth. Engrg. 24, pp. 359–373, 1987)CrossRefMATHMathSciNetGoogle Scholar
  39. [39]
    E.J. Haug, K.K. Choi and V. Komkov, Design Sensitivity of Structural Systems (Academic Press, New York, 1986)Google Scholar
  40. [40]
    R.T. Haftka and H.M. Adelmann, Recent Developments in Structural Sensitivity Analysis (Structural Optimization, 1, pp. 137–151, 1989)CrossRefGoogle Scholar
  41. [41]
    G. Cheng and L. Yingwei, A New Computation Scheme for Sensitivity Analysis (Eng. Opt. 12, pp. 219–234, 1987)CrossRefGoogle Scholar
  42. [42]
    P. Pedersen, On the Minimum Mass Layout of Trusses (Advisory Group for Aerospace Research and Development, Conf. Proc. No. 36, Symposium on Structural Optimization, Istanbul, Turkey, AGARD-CP-36–70, 1970)Google Scholar
  43. [43]
    P. Pedersen, On the Optimal Layout of Multi-Purpose Trusses (Computers and Structures, 2, pp. 695–712, 1972)CrossRefGoogle Scholar
  44. [44]
    P. Pedersen, Optimal Joint Positions for Space Trusses (Journal of The Structural Division, ASCE 99, pp. 2459–2476, 1973)Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • N. Olhoff
    • 1
  • J. Rasmussen
    • 1
  • M. P. Bendsøe
    • 2
  1. 1.The University of AalborgAalborgDenmark
  2. 2.The Technical University of DenmarkLyngbyDenmark

Personalised recommendations