Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 332))

  • 128 Accesses

Abstract

In the present paper a general formulation of optimal design problems is firstly proposed, and the variational method founded on Lagrangian multiplier technique is shown. As an application a simple example for optimal plastic design of beams is solved.

The variational formulation is discussed in detail for the case of plastic design of circular plates: optimality criterion is shown and special features of optimal solutions are discussed.

Then the same problem is proposed in a discretized form, which makes use of a finite different technique and leads to a linear programming formulation. The features of such an approach are discussed and numerical solutions are shown as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drucker, D.C. and R.T.Shield, Design for minimum weight, Proc. 9th Int. Congr. of Applied Mechanics, Brussels, 5, 1956, 212–222

    Google Scholar 

  2. Gross, O. and W.Prager, Minimum-Weight Design for Moving Loads, Proc.4th U.S. Nat. Congr. Appl.Mech.ASME, New York, 2, 1962, 1047

    Google Scholar 

  3. Prager, W. and R.T.Shield, A General Tehory of Optimal Plastic Design, J.Appl. Mech. Trans. A.S.M.E., 34, 1, 1967

    Article  Google Scholar 

  4. Chern, J.M. and W.Prager, Optimum Design for Prescribed Compliance Under Alternative Loads, J. Opt.Th.Appl., 5 (1970), 424–431

    Article  MATH  MathSciNet  Google Scholar 

  5. Save, M., A Unified Formulation of the Theory of Optimal plastic Design with Convex Cost Function, J.Struct. Mech., 1(1972), 267276

    Google Scholar 

  6. Rozvany, G.I.N., Optimal Design of Flexural Systems, Pergamon Press, Sydney, 1976

    Google Scholar 

  7. Prager, W. and J.E.Taylor, Problems of Optimal Structural Design, J.Appl. Mech., 35, (1968), 102–106

    Article  MATH  Google Scholar 

  8. Prager, W. Conditions for Structural Optimality, Computers and Structures, 2, (1972), 833–840

    Article  Google Scholar 

  9. Save, M., A general criterion for Optimal Structural Design, J.Opt. Tehory Appl., 15, (1975), 119–129

    Article  MATH  MathSciNet  Google Scholar 

  10. Rozvany, G.I.N., Optimal design of Flexural Systems, Oxford, Pergamon Press (1976)

    Google Scholar 

  11. Hemp, W.S., Optimum Structures, Claredon Press, Oxford, 1973

    Google Scholar 

  12. Cinquini, C. and B.Mercier, Minimal Cost in Elastoplastic Structures, Meccanica, 11, 4, 1976, 219–226

    Article  MATH  Google Scholar 

  13. Huang, N.C., Optimal Design of Elastic Beams for Minimum-Maximum Deflection, J. Appl. Mech.Trans. A.S.M.E., Dec., 1971, 1078–1081

    Google Scholar 

  14. Cinquini. C. Optimal Elastic Design for Prescribed Maxium Deflection, J. Struct. Mech., Vol. 7, 1, 1979, 21–34

    Article  MathSciNet  Google Scholar 

  15. Cohn, M.Z., Analysis and Design of Inelastic Structures, Univ. of Waterloo Press, Waterloo, 1972

    Google Scholar 

  16. Sawczuk A. and Z.Mroz, Optimization in Structural Design, Proc. IUTAM Symp., Warsaw 1973, Springer Verlag, Berlin, 1975

    Google Scholar 

  17. Haug, E.J. and J. Cea, Optimization of Distributed Parameter Structures, Proc. NATO ASI, Iowa City, Iowa, 1980, Noordhoff, The Netherlands, 1981

    Google Scholar 

  18. Gallager, R.H., Proceedings International Symposium on Optimum Structural Design, Univ. of Arizona, Tucson, Arizona, 1981

    Google Scholar 

  19. Morris, A.J., Foundations of Structural Optimization: A Unified Approach, Proc. NATO ASI, Liege, Belgium, 1980, Chichester, 1982

    Google Scholar 

  20. Ekeland, I. and R.Temam, Analyse convexe et problemes variationnels, Dunod, Paris, 1973

    Google Scholar 

  21. Cinquini, C. and G.Sacchi, Problems of optimal design for elastic and plastic structures, J. de Mecanique Appl., 4, (1980), 31–59

    MATH  MathSciNet  Google Scholar 

  22. Guerlement, G., Lamblin, D. and C. Cinquini, Dimensionnement plastique de cout minimal avec contraintes technologiques de poutres soumines a plusieurs ensembles de charges, J. de Mec. Appl., 1, 1, 1977, 1–25

    MathSciNet  Google Scholar 

  23. Guerlement, G., Lamblin, D. and C. Cinquini, Variational formulation of the optimal plastic design of circular plates, Comput. Meth. Appl. Mech. Eng. 11, 1977, 19–30

    Article  MATH  MathSciNet  Google Scholar 

  24. Guerlement, G., Lamblin, D. and C. Cinquini, Application of linear programming to the optimal plastic design of circular plates subject to technological constrains, Coput. Meth. Appl. Mech. Eng., 13, 2, 1978, 233–243

    Article  MATH  MathSciNet  Google Scholar 

  25. Sheu,C.Y. and W. Prager, Optimal Plastic Design of circular and annular sandwich plates with piecewise constant cross section, J. Mech.Phys. Solids, 17. 1969„ 11–16

    Google Scholar 

  26. Hadley, G., Nonlinear and dynamic programming, Addinson Wesley, Chicago, 1965

    Google Scholar 

  27. Hopkins, H. and W.Prager, Limits of economy of material in plates, J. Appl. Mech., 22, 1955, 372–374

    MATH  Google Scholar 

  28. Hopkins, H. and W.Prager, The load carrying capacity of circular plates, J. Mech. Phys. Solids, 2, 1953, 372–374

    Article  MathSciNet  Google Scholar 

  29. Guerlement, G. and D. Lamblin, Dimensionnement plastique de volume minimal sous contraintes de plaques sandwhich circulaires soumises a des charges fixes ou mobiles, J.Mec., 15, 1 1976, 55–84

    Google Scholar 

  30. Lamblin, D. Analyse et dimensionnement plastique de cout minimum de plaques circulaires, These de Doctorat en Sciences Appl., Faculte Polytechnique de Mons, 1975

    Google Scholar 

  31. Mgarefs, G.J., Method for minimal design of axisymmetric plates, Asce J. Eng.Mech. Div., 92, 1966, 79–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this chapter

Cite this chapter

Cinquini, C. (1993). Limit Design: Formulations and Properties. In: Landriani, G.S., Salençon, J. (eds) Evaluation of Global Bearing Capacities of Structures. International Centre for Mechanical Sciences, vol 332. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2752-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2752-0_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82493-1

  • Online ISBN: 978-3-7091-2752-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics