Application of Homogenization Theory and Limit Analysis to the Evaluation of the Macroscopic Strength of Fiber Reinforced Composite Materials

  • A. Taliercio
Part of the International Centre for Mechanical Sciences book series (CISM, volume 332)


The macroscopic strength domain of a composite material reinforced by long, parallel fibers is, in general, unknown but for its theoretical definition. In this note it is shown how a homogenization technique applied to yield design theory allows the derivation of two domains (in the space of macroscopic stresses) which are a lower and an upper bound to the composite strength domain. The dependence of these domains on the fiber content and on the shape of the fiber array is pointed out. Analytical equations for the approximate uniaxial macroscopic strength of composites with Drucker-Prager or Von Mises type matrix are derived. For more complex stress conditions, the relevant strength domains are numerically evaluated as well. The discrepancy between the two bounds is in many cases relatively small. In particular, the two bounds yield the same value for the uniaxial strength of the composite along the fiber direction, which by consequence is exactly determined.


Limit Analysis Representative Volume Element Failure Surface Fiber Volume Fraction Strength Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azzi, V.D. and Tsai, S.W.: Anisotropic strength of composites, Experimental Mechanics, 5 (1965), 286–288.Google Scholar
  2. 2.
    Hoffmann, O.: The brittle strength of orthotropic materials, J. Compos. Mater, 1 (1967), 200–206.CrossRefGoogle Scholar
  3. 3.
    Tsai, S.W. and Wu, E.M.: A general theory of strength for anisotropic materials, J. Compos. Mater., 5 (1968), 58–80.CrossRefGoogle Scholar
  4. 4.
    Hill, R.: The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950.zbMATHGoogle Scholar
  5. 5.
    Wu, E.M.: Phenomenological anisotropic failure criterion, in: Composite Materials, Vol. II (Eds. L.J. Broutman and R.H. Krock), Academic Press, New York, 1974.Google Scholar
  6. 6.
    Boehler, J.P. and Raclin, J.: Failure criteria for glass—fiber reinforced composites under confining pressure, J. Struct. Mech., 13 (1984), 371–393.CrossRefGoogle Scholar
  7. 7.
    Hashin, Z.: Failure criteria for unidirectional fiber composites, ASME Trans., J. Appl. Mech., 47 (1980), 329–334.CrossRefGoogle Scholar
  8. 8.
    McLaughlin, P.V. Jr. and Batterman, S.C.: Limit behaviour of fibrous materials, Int. J. Solids Structures, 6 (1970), 1357–1376.CrossRefGoogle Scholar
  9. 9.
    McLaughlin, P.V.: Plastic limit behaviour and failure of filament reinforced materials, Int. J. Solids Structures, 8 (1972), 1299–1318.CrossRefzbMATHGoogle Scholar
  10. 10.
    de Buhan, P. and Taliercio, A.: Critère de résistance macroscopique pour les matériaux composites à fibres, C.R. Acad. Sci., Paris, 307 (1988), Série II, 227–232.Google Scholar
  11. 11.
    de Buhan, P. and Taliercio, A.: A homogenization approach to the yield strength of composite materials, Eur. J. Mech., A/Solids, 10 (1991), 129–154.zbMATHGoogle Scholar
  12. 12.
    Taliercio, A.: Lower and upper bounds to the macroscopic strength domain of fiber reinforced composite materials, Int. J. Plasticity (1992 - to appear).Google Scholar
  13. 13.
    Taliercio, A.: Influenza dell’interfaccia fibre-matrice nella formulazione di modelli di resistenza macroscopici per materiali compositi, Proc. Nat. Congr. on Problems of Material and Structure Mechanics,Amalfi (Italy), June 3–5, 1991 (to appear).Google Scholar
  14. 14.
    de Buhan, P. Salençon, J. and Taliercio, A.: Lower and upper bounds estimates for the macroscopic strength criterion of fiber composite materials, in: Inelastic Deformation of Composite Materials (Ed. G.J. Dvorak ), Springer-Verlag, New York, 1991, 563–579.CrossRefGoogle Scholar
  15. 15.
    Hashin, Z.: Analysis of composite materials-a survey, ASME Trans., J. Appl. Mech., 50 (1983), 481–505.CrossRefzbMATHGoogle Scholar
  16. 16.
    Hashin, Z. and Rosen, B.W.: The elastic moduli of fiber-reinforced materials, ASME Trans., J. Appl. Mech., 31 (1964), 223–232.CrossRefGoogle Scholar
  17. 17.
    Suquet, P.: Plasticité et homogénéisation, Thèse d’Etat, Université Pierre et Marie Curie, Paris, 1983.Google Scholar
  18. 18.
    Suquet, P.: Analyse limite et homogénéisation, C.R. Acad. Sci., Paris, 296 (1983), Série II, 1355–1358.Google Scholar
  19. 19.
    Salençon, J.: Calcul à la rupture et analyse limite, Presses de l’E.N.P.C., Paris, 1983.Google Scholar
  20. 20.
    Tyrrell Rockafellar, R.: Convex Analysis, Princeton Univ. Press, Princeton, N.J. (USA), 1970.Google Scholar
  21. 21.
    Hull, D.: An introduction to composite materials, Cambridge Univ. Press, 1981.Google Scholar
  22. 22.
    Tsai, S.W.: Strength theories of of filamentary structures, in: Fundamental Aspects of Fiber Reinforced Plastic Composites (Eds. R.T. Schwartz and H.S. Schwartz ), Wiley Interscience, New York, 1968.Google Scholar
  23. 23.
    Tsai, S.W. and Hahn, H.T.: Introduction to Composite Materials, Technomic Pub. Co., Westport, Conn. (USA), 1980.Google Scholar
  24. 24.
    Aboudi, J.: Micromechanical analysis of fibrous composites with Coulomb frictional slippage between the phases, Mech. Mater., 8 (1989), 103–115.MathSciNetGoogle Scholar
  25. 25.
    Taliercio, A.: Delimitazione bilaterale del dominio di resistenza macroscopico di un materiale fibrorinforzato, Proc. X Nat. Congr. AIMETA, Pisa (Italy), October 2–5, 1990, 141–146.Google Scholar
  26. 26.
    Turgeman, S. and Pastor, J.: Comparaison des charges limites d’une structure hétérogène et homogénéisée, J. Méc. Th. Appl., 6 (1987), 121–143.zbMATHGoogle Scholar
  27. 27.
    Marigo, J.P., Mialon, P., Michel, J.P. and Suquet, P.: Plasticité et homogénéisation: un example de prévision des charges limites d’une structure hétérogène périodique, J. Méc. Th. Appl., 6 (1987), 47–75.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • A. Taliercio
    • 1
  1. 1.Politechnic of MilanMilanItaly

Personalised recommendations