Application of the Yield Design Theory to the Mechanics of Reinforced Soils

  • P. de Buhan
Part of the International Centre for Mechanical Sciences book series (CISM, volume 332)


The considerable development of various reinforcement techniques in soil mechanics over the last few decades, has made it necessary to devise both reliable and efficient methods for analysing the stability of such composite soil structures. The Yield Design theory is perfectly well suited to undertaking such a task, since it provides a comprehensive mechanical framework. The purpose of this contribution is to present two different approaches to the problem.

The first part is devoted to the so-called mixed modelling approach, where the reinforcements are perceived as structural elements (rods, beams, plates etc.)embedded in the soil treated as a 3-D continuum. It is shown in particular how the kinematic method of yield design can be implemented, leading to practical developments such as a computer code for the design of reinforced soil retaining structures.

A complementary (and sometimes alternative) point of view is presented in the second part. It originates from the intuitive idea that, in many cases, the composite reinforced soil may be perceived as a homogeneous material on the scale of the structure. The Yield Design theory associated with a homogenization technique makes it then possible to derive explicit expressions for the macroscopic strength criterion of such reinforced soils, on the basis of which a design method is implemented. Possible extensions of this approach to some particular kinds of reinforcement are briefly outlined.


Shear Strength Friction Angle Triaxial Test Strength Condition Strength Criterion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SALENÇON, J.: Calcul à la Rupture et Analyse Limite, Ed. Presses de l’E.N.P.C., Paris, 1983.Google Scholar
  2. 2.
    SALENÇON, J.: An introduction to the yield design theory and its application to soil mechanics, Eur. Jl Mech., A/Solids, 9, 1990, 477–500.Google Scholar
  3. SALENON, J.: Yield design: a survey of the theory, C.I.S.M. course “On the Evaluation of Global Bearing Capacities of Structures”, 1992.Google Scholar
  4. 4.
    ANTHOINE, A.: Mixed modelling of reinforced soils within the framework of the yield design theory, Comp. Geotech., 7, 1989, 67–82.CrossRefGoogle Scholar
  5. 5.
    PASTOR, J., TURGEMAN, S., CISS, A.: Calculation of limit loads of structures in soils with metal reinforcement, Eur. Conf. Num. Meth. Geomech., Stuttgart, Germany, 1986.Google Scholar
  6. 6.
    de BUHAN, P., SALENÇON, J.: A comprehensive stability analysis of soil nailed structures, To appear in Eur. Jl Mech., A/Solids, 1992.Google Scholar
  7. 7.
    SALENÇON, J.: Cours de Mécanique des Milieux Continus, T. II, Ed. Ellipses, Paris, 1988.Google Scholar
  8. 8.
    ANTHOINE, A.: Une méthode pour Ze dimensionnement à la rupture des ouvrages en sols renforcés, Rev. Fr. Géotech., 50, 1990, 5–21.Google Scholar
  9. 9.
    de BUHAN, P., DORMIEUX, L., SALENÇON, J.: Stability analysis of rein/breed soil retaining structures using the yield design theory, Int. Conf. on retaining structures, Cambridge, 20–23 July, 1992.Google Scholar
  10. 10.
    PLUMELLE, C.: Expérimentation en vraie grandeur d’une paroi en sot cloué, Rev. Fr. Géotech., 40, 1987, 45–50.Google Scholar
  11. 11.
    ANTHOINE, A.: Stabilité d’une fouille renforcée par clouage, Proc. 4th French-Polish Coll. Appl. Soil Mech., Grenoble, France, 1987.Google Scholar
  12. 12.
    de BUHAN, P., DORMIEUX, L., SALENÇON, J.: An interactive computer software for the yield design of reinforced soil structures,. “Computers and Geotechnics” Coll., Paris, 1992.Google Scholar
  13. 13.
    GARNIER, D.: Analyse de la stabilité d’ouvrages en sols cloués avec prise en compte des résistances à la flexion et au cisaillement, Graduation thesis, Lab. Mec. Sol., 1991.Google Scholar
  14. 14.
    JEWELL, R.A., PEDLEY, M.J.: Soil nailing design: the role of bending stiffness, Ground Engineering, March, 1990, 30–36.Google Scholar
  15. 15.
    SCHLOSSER, F.: Discussion: the multicriteria theory in soil nailing, Ground Engineering, November, 1991, 30–33.Google Scholar
  16. 1.
    PASTOR, J., TURGEMAN, S., CISS, A.: Calculation of limit loads of structures in soils with metal reinforcement, Eur. Conf. Num. Meth. Geomech., Stuttgart, Germany, 1986.Google Scholar
  17. 2.
    SUQUET, P.: Elements of homogenization in inelastic solid mechanics, In “Homogenization techniques for composite media”, C.I.S.M., Udine, Springer Verlag, 1985, 193–278.Google Scholar
  18. 3.
    de BUHAN, P.: Approche fondamentale du calcul à la rupture des ouvrages en sols renforcés, Th. Dr Sc., Paris, 1986.Google Scholar
  19. 4.
    de BUHAN, P., SALENÇON, J.: Yield strength of reinforced soils as anisotropie media, In “Yielding, Damage and Failure of Anisotropic Solids”, Ed. J.P. Boehler, Mech. Eng. Publ., London, 1990, 791–803.Google Scholar
  20. 5.
    Mc LAUGHLIN, P.V.: Plastic limit behaviour and failure of filament reinforced materials, Int. Jl Solids Structures, 8, 1972, 1299–1318.CrossRefGoogle Scholar
  21. 6.
    SAWICKI, A.: Plastic limit behaviour of reinforced earth, Jl Geotech. Eng., A.S.C.E., 109, 1983, 1000–1005.CrossRefGoogle Scholar
  22. 7.
    SAWICKI, A., LESNIEWSKA, D.: Failure modes and bearing capacity of reinforced retaining walls, Geotextiles and Geomembranes, 5, 1987, 29–44.CrossRefGoogle Scholar
  23. 8.
    BISHOP, A.W.: The strength of soils as engineering materials, Géotechnique, 16, 1966, 89–130.CrossRefGoogle Scholar
  24. 9.
    SALENÇON, J.: Yield strength of anisotropie soils, Invited lecture, Proc. 16th I.C.T.A.M., Lyngby, Denmark, North-Holland, 1984, 369–386.Google Scholar
  25. 10.
    de BUHAN, P., SALENÇON, J., SIAD, L.: Critère de résistance pour Ze matériau “terre armée”, C.R. Acad. Sc., Paris, 302, série II, 1986, 377–381.Google Scholar
  26. 11.
    BOEHLER, J.P., SAWCZUK, A.: Equilibre limite de sols anisotropes, Jl Mécanique, 9, 1970, 5–33.MATHGoogle Scholar
  27. 12.
    LONG, N.T., URSAT, P.: Comportement du sol renforcé, L.C.P.C. - L.R. Strasbourg, 1977.Google Scholar
  28. 13.
    MANGIAVACCHI, R., PELLEGRINI, G.: Analisi teorica del comportamento della terra armata mediante una procedura di omogeneizazzione, Tesi di Laurea, Politecnico di Milano, 1985.Google Scholar
  29. 14.
    de BUHAN, P., SALENÇON, J.: Analyse de stabilité des ouvrages en sols renforcés par une méthode d’homogénéisation, Rev. Fr. Géotech., 41, 1987, 29–43.Google Scholar
  30. 15.
    SIAD, L.: Dimensionnement d’ouvrages en terre armée par une méthode d’homogénéisation, Th. Dr E.N.P.C., Paris, 1987.Google Scholar
  31. 16.
    de BUHAN, P., MANGIAVACCHI, R., NOVA, R., PELLEGRINI, G., SALENÇON, J.: Yield design of reinforced earth walls by a homogenization method, Géotechnique, 39, 1989, 189–201.CrossRefGoogle Scholar
  32. 17.
    BEN ASSILA, A., EL AMRI, M.: Comportement à la rupture des murs en terre armée et clouée, Graduation thesis, E.N.P.C., Paris, 1984.Google Scholar
  33. 18.
    SCHLOSSER, F., VIDAL, H.: La Terre Armée, Bull. Liais. L.C.P.C., Paris, 41, 1969, 101–144.Google Scholar
  34. 19.
    JURAN, I., SCHLOSSER, F.: Etude théorique des efforts de traction dans les armatures des ouvrages en terre armée, Proc. Int. Conf. Soil Reinf., Paris, 1, 1979, 77–82.Google Scholar
  35. 20.
    de BUHAN, P., SIAD, L.: Influence of a soil-strip interface failure condition on the yield-strength of reinforced earth, Comp. and Geotech., 7, 1989, 3–18.CrossRefGoogle Scholar
  36. 21.
    KHAY, M., GIGAN, J.P.: Texsoz: ouvrages de soutènement, Guide technique L.C.P.C. - S.E.T.R.A., 1990.Google Scholar
  37. 22.
    de BUHAN, P., SALENÇON, J., VERZURA, L.: Une modélisation de La résistance des sols renforcés par fils continus, Scientific Report Greco “Géomatériaux”, 1990.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • P. de Buhan
    • 1
  1. 1.Ecole PolytechniquePalaiseauFrance

Personalised recommendations