Dynamic Photoelasticity and Holography Applied to Crack and Wave Propagation

  • H. P. Rossmanith
  • W. L. Fourney
Part of the International Centre for Mechanical Sciences book series (CISM, volume 275)


The field of elastodynamics covers the class of problems in solid mechanics where the inertia term on the right hand side of the equations of motion
where e is the dilatation and ω is the in-plane rotation of an element, may not be neglected because of rapid changes of stress and displacement in time. These variations of the stresses are due to loads or displacements which change in time, or they are due to relatively sudden changes in the geometry of the body. From the broad field of elastodynamics only stress wave propagation, fracture propagation and their interaction, and penetration (high speed impact) problems will be highlighted here.


Rayleigh Wave Stress Wave Fringe Pattern Stress Wave Propagation Isochromatic Fringe Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    Dally J. W. and W. F. Riley: Experimental Stress Analysis, 2nd Edition, McGraw-Hill (1978)Google Scholar
  2. /2/.
    Föppl L, and E. Mönch: Praktische Spannungsoptik, 3rd Edition, Springer-Verlag, Berlin (1972)CrossRefGoogle Scholar
  3. /3/.
    Tuzi Z.: Photographic and kinematographic study of photoelasticity. Jnl. Soc. “9ech. Eng. 31, 334–339 (1928)Google Scholar
  4. /4/.
    Riley W. F. and J. W. Dally: Recording dynamic fringe patterns with a Cranz-Schardin camera. Exp. Mech. 9, 27N - 33N (1969)CrossRefGoogle Scholar
  5. /5/.
    Dally J. W.: Dynamic Photoelasticity, CISf1 Lectures, Udine 1976, Springer-Verlag, Vienna-New York (1976).Google Scholar
  6. /6/.
    Cranz C. and H. Schardin: Kinematographie auf ruhendem Film and mit extrem hoher Bildfrequenz, Zeits. f. Physik, 56, 147 (1929)CrossRefGoogle Scholar
  7. /7/.
    Christie D. G.: A multiple spark camera for dynamic stress analysis. Jnl. Phot. Sci. 3, 153–159 (1955)Google Scholar
  8. /8/.
    Wells A. A. and D. Post: The dynamic stress distribution surrounding arunning crack — A photoelastic analysis. Proc. SESA 16, 1, 69–92 (1957)Google Scholar
  9. /9/.
    Dally J. W.: An introduction to dynamic photoelasticity. Exp. Mech. 20, 409–416 (1980)CrossRefGoogle Scholar
  10. /10/.
    Dally J. W. and W. F. Riley: Stress wave propagation in a half-plane due to a transient point load. “Developments in Theoretical and Applied Mechanics”, Vol. 3, Pergamon Press, New York, 357–377 (1967)Google Scholar
  11. /11/.
    Riley W. F. and Dally J. W.: A photoelastic analysis of stress wave propagation in a layered model, Geophysics 31, 881–889 (1966)CrossRefGoogle Scholar
  12. /12/.
    Dälly J. W. and S. A. Thau: Observations of stress wave propagation in a half-plane with boundary loading. Int. Jnl. Solids and Structures, 3, 293–308 (1967)CrossRefGoogle Scholar
  13. /13/.
    Burger C. P. and Riley W. F.: Effects of impedance mismatch on the strength of waves in layered solids. Exp. Mech. 14, 129–137 (1974)CrossRefGoogle Scholar
  14. /14/.
    Dally J. W. and D. Lewis: A photoelastic analysis bf propagation of Rayleigh waves past a step change in elevation. Bull. Seis. Soc. Amer. 58, 539–562 (1968)Google Scholar
  15. /15/.
    Dally J. W.: Dynamic photoelastic studies of dynamic fracture. Exp. Mech. 19, 349–361 (1979)CrossRefGoogle Scholar
  16. /16/.
    Reinhardt H. W. and Dally J. W.: Dynamic photoelastic investigation of stress wave interaction with a bench face. Trans. Soc. Min. Eng. AIME, 250, 35–42 (1971)Google Scholar
  17. /17/.
    Fourney W. L. et al: Fracture initiation and propagation from a center of dilatation. Int. J. Fract. 11, 1011–1029 (1975)Google Scholar
  18. /18/.
    University of Maryland, Photoemechanics Laboratory Report Series on “Blasting and Fragmentation”, 1974–1982.Google Scholar
  19. /19/.
    Schardin H.: Ergebnisse der kinematographischen Untersuchung des Glas- bruchvorganges, Part I, II, III. Glastechnische Berichte, 23 (1950)Google Scholar
  20. /20/.
    Kolsky H.: Stress Waves in Solids, Dover Publ. New York (1963)Google Scholar
  21. /21/.
    Kerkhof F.: Report Series of the Institut für Festkörperphysik (IWM) Freiburg, Germany.Google Scholar
  22. /22/.
    Rossmanith H. P. and A. Shukla: Photoelastic investigation of stress wave diffraction about stationary crack tips. J. Mech. Phys. Solids, 29, 397–412 (1981)CrossRefGoogle Scholar
  23. /23/.
    Rossmanith H. P. and A. Shukla: Dynamic photoelastic investigation of interaction of stress waves with running cracks. Exp. Mech. 21, 415–422, (1981)CrossRefGoogle Scholar
  24. /24/.
    Dally J. W. and Brillhart L. V.: Application of multiple spark gap camera to dynamic photoelasticity. J. Soc. Motion Pic. Telev. Sci. 77, 116–120 (1968)Google Scholar
  25. /25/.
    Holloway D. C. et al.: A study of surface wave propagation in rock by holographic interferometry. Exp. Mech. 17 (8), 281–289 (1977)CrossRefGoogle Scholar
  26. /26/.
    Kobayashi A. S. et al: Crack branching in Homalite 100 sheets. Eng. Fract. Mech. 6, 81 (1974)CrossRefGoogle Scholar
  27. /27/.
    Rossmanith H. P.: Crack branching in brittle materials — Part I: Analytical Aspects; Part II: Dynamic Photoelastic Investigation. NSF-Reports University of Maryland (1980)Google Scholar
  28. /28/.
    Rossmanith H. P. and W. L. Fourney: Fracture initiation and stress wave diffraction at cracked interfaces in layered media. I-Brittlebrittle transition. Rock Mechanics 14, 209–233 (1982)CrossRefGoogle Scholar
  29. /29/.
    Thau S. A. and J. W. Dally: Subsurface characteristics of the Rayleigh wave. Int. Jnl. Sci. 7, 37 (1969)MATHGoogle Scholar
  30. /30/.
    Rossmanith H. P.: The role of Rayleigh waves in rock mechanics. Proc. 18th U. S. Rock Mechanics Conf. Nevada, 138–147 (1978).Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • H. P. Rossmanith
    • 1
  • W. L. Fourney
    • 2
  1. 1.Institute of MechanicsTechnical University ViennaAustria
  2. 2.Department of Mechanical EngineeringUniversity of MarylandUSA

Personalised recommendations