Numerical Modelling of Fracture Propagation

  • Anthony R. Ingraffea
Part of the International Centre for Mechanical Sciences book series (CISM, volume 275)


Why should one study fracture propagation? Is not prediction of fracture initiation the object of fracture mechanics? In his papers on rupture under tensile and compressive loading, Griffith1,2 proposed conditions for fracture initiation which he presumed to be coincident with structural instability. The vast majority of the fracture mechanics research since Griffith has addressed the problem of predicting structural failure as the immediate consequence of fracture initiation. Yes, considerable attention has been focused on sub-critical crack growth as in fatigue and ductile fracture. But there the amount of propagation before fracture initiation is typically small compared to that which potentially occurs after. Why, then, should one be interested in modelling propagation: where a crack goes, what it does along the way, and how much energy it takes to get there?


Stress Intensity Factor Boundary Element Boundary Element Method Strain Energy Density Linear Elastic Fracture Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    Griffith, A.A.: The phenomenon of rupture and flow in solids. Phil. Trans. Roy. Soc. London, Ser. A221, 163 (1921)CrossRefGoogle Scholar
  2. /2/.
    Griffith, A.A.: Theory of rupture. Proc.First Int. Congress Appl. Mech., Delft 55 (1924)Google Scholar
  3. /3/.
    Ingraffea, A.R.: Discrete fracture propagation in rock: laboratory tests and finite element analysis. Ph.D. dissertation, University of Colorado (1977)Google Scholar
  4. /4/.
    Ingraffea, A.R. and H.-Y. Ko: Determination of fracture parameters for rock. Proceedings of First USA-Greece Symposium Mixed Mode Crack ‘Propagation, G.C. Sih and P.S. Theocaris, eds., Sijthoff & Noordhoff, Alphen aan den Rijn, the Netherlands, 349 (1981)Google Scholar
  5. /5/.
    Ingraffea, A.R. and F.E. Heuze: Finite element models for rock fracture mechanics. Int.J.Num.Analy.Meths. in Geomechs. 4,25 (1980)Google Scholar
  6. /6/.
    Cotterell, B.: Brittle fracture in compression. Int.J.Fract.Mech. 8, 195 (1972)Google Scholar
  7. /7/.
    Bombalakis, E.G.: Photoelastic study of initial stages of brittle fracture in compression. Tectonophysics 6, 461 (1968)CrossRefGoogle Scholar
  8. /8/.
    Hoek, E. and Z.T. Bieniawski: Brittle fracture propagation in rock under compression. Int.J.Fract.Mech. 1, 139 (1965)Google Scholar
  9. /9/.
    Ingraffea, A.R.: The strength-ratio effect in rock fracture. J. of Am.Cer.Soc., in press.Google Scholar
  10. /10/.
    Parks, D.M.: A stiffness derivative finite element technique for determination of crack tip states intensity factors. Int.J.Fract. 10, 4, 487 (1974)CrossRefMathSciNetGoogle Scholar
  11. /11/.
    Atluri, S.N., A.S. Kobayashi, and M. Nakagaki: An assumed displacement hybrid element model for linear fracture mechanics. Int.J. Fract. 11,2, 257 (1975)Google Scholar
  12. /12/.
    Chan, S.F., I.S. Tuba, and W.K. Wilson: On the finite element method in linear fracture mechanics. Engr.Fract.Mech. 2, 1 (1970)CrossRefGoogle Scholar
  13. /13/.
    Wilson, W.K.: On combined mode fracture mechanics. Ph.D. dissertation, University of Pittsburgh (1969)Google Scholar
  14. /14/.
    Tracey, D.M.: Finite elements for determination of crack tip elastic stress intensity factors. Engr.Fract.Mech. 3, 255 (1971)CrossRefGoogle Scholar
  15. /15/.
    Jordan, W.B.: The plane isoparametric structural element. General Electric Co., Knolls Atomic Power Lab., Report No. KAPL-M-7112 (1970)Google Scholar
  16. /16/.
    Barsoum, R.S.: On the use of isoparametric finite elements in linear fracture mechanics. Int.J.Num.Meth.Engrg. 10, 25 (1976)CrossRefMATHGoogle Scholar
  17. /17/.
    Barsoum, R.S.: Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int.J.Num.Meth.Engrg. 11, 85 (1977)CrossRefMATHGoogle Scholar
  18. /18/.
    Freese, C.E. and D.M. Tracey: The natural isoparametric triangle versus collapsed quadrilateral for elastic crack analysis. Int.J. Fract. 12, 767 (1976)Google Scholar
  19. /19/.
    Shih, C.F., H.G. de Lorenzi, and M.D. German: Crack extension modeling with singular quadratic isoparametric elements. Int.J. Fract. 1, 647 (1976)Google Scholar
  20. /20/.
    Ingraffea, A.R. and C. Manu: Stress-intensity factor computation in three dimensions with quarter-point elements. Int.J.Num.Meth.Engrg. 15, 10, 1427 (1980)Google Scholar
  21. /21/.
    Cruse, T.A. and R.B. Wilson: Boundary-integral equation method for elastic fracture mechanics. AFOSR-TR-0355 (1977)Google Scholar
  22. /22/.
    Blandford, G., A.R. Ingraffea, and J.A. Liggett: Two-dimensional stress intensity factor calculations using boundary elements methods. Int.J.Num.Meth.Engrg. 17, 387 (1982)CrossRefGoogle Scholar
  23. /23/.
    Brown, W.F. and J.E. Srawley: Plane strain crack toughness testing of high strength metallic materials. ASTM Special Tech. Publication, 410 (1966)Google Scholar
  24. /24/.
    Erdogan, F. and G.C. Sih: On the crack extension in plates under plane loading and transverse shear. ASME J.Basic Engr. 85, 519 (1963)CrossRefGoogle Scholar
  25. /25/.
    Sih, G.C.: Some basic problems in fracture mechanics and new concepts. Engr.Fract.Mech. 5, 365 (1973)CrossRefGoogle Scholar
  26. /26/.
    Sih, G.C.: Strain-energy-density factor applied to mixed mode crack problems. Int.J.Fract. 10, 305 (1974)CrossRefGoogle Scholar
  27. /27/.
    Sih, G.C. and B. MacDonald: Fracture mechanics applied to engineering problems — strain energy density fracture criterion. Eng.Fract. Mech. 6, 361 (1974)Google Scholar
  28. /28/.
    Sih, G.C.: Surface layer energy and strain energy density for a blunted notch or crack. Proc.Int.Conf.Prosp.Fract.Mech., Delft (1974)Google Scholar
  29. /29/.
    Sih, G.C.: Mechanics of fracture: linear response. Proc. of the First Int.Conf. on Num.Meth. in Fract.Mech., University College, Swansea 155 (1978)Google Scholar
  30. /30/.
    Hussain, M.A., S.L. Pu, and J. Underwood: Strain energy release rate for a crack under combined Mode I and Mode II. Frac. Analysis, ASTM-STP 560 2 (1974)Google Scholar
  31. /31/.
    Kordisch, H. and E.Sommer: Bruchkriterien bei überlagerter Normal-und Scherbeanspruchung von Rissen. Report W677, Fraunhofer-Gesellschaft, Institut für Werkstoffmechanik, IWM, Freiburg, West Germany.Google Scholar
  32. /32/.
    Ingraffea, A.R.: Mixed-mode fracture initiation in Indiana limestone and Westerly granite. Proc. 22nd U.S. Symposium on Rock Mechanics, Cambridge, MA 186 (1981)Google Scholar
  33. /33/.
    Saouma, V., A.R. Ingraffea, and D. Catalano: Fracture toughness of concrete: KIc revisited. ASCE J.Engr.Mech.Div., in press.Google Scholar
  34. /34/.
    Beech, J. and A.R. Ingraffea: Three-dimensional finite element stress intensity factor calibration of the short rod specimen. Int. J.Fract. 18 3 217 (1982)Google Scholar
  35. /35/.
    Blandford, G.E.: Automatic two-dimensional quasi-static and fatigue crack propagation using the boundary element method. Ph.D. dissertation, Cornell University (1981)Google Scholar
  36. /36/.
    Saouma, V.E.: Interactive finite element analysis of reinforced concrete: a fracture mechanics approach. Ph.D. dissertation, Cornell University (1981)Google Scholar
  37. /37/.
    Ingraffea, A.R., G. Blandford, and J.A. Liggett: Automatic modelling of mixed-mode fatigue and quasi-static crack propagation using the boundary element method. Proceedings 14th National Symposium on Fracture Mechanics, ASTM-STP 791 (1981) in press.Google Scholar
  38. /38/.
    Saouma, V.E. and A.R. Ingraffea: Fracture mechanics analysis of discrete cracking. Proceedings, IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, Delft 393 (1981)Google Scholar
  39. /39/.
    Hoek, E.: Rock fracture around mining excavations. Proc. Fourth Int. Conf. Strata Control and Rock Mech., Columbia University, NY 334 (1964)Google Scholar
  40. /40/.
    Haber, R.B., M.S. Shephard, R.H. Gallagher, and D.P. Greenberg: A.generalized graphic preprocessor for two-dimensional finite element analysis. Computer Graphics, a quarterly report of SIGGRAPH-ACM 12, 3, 323 (1978)CrossRefGoogle Scholar
  41. /41/.
    Schulman, M.A.: The interactive display of parameters on two-and three-dimensional surfaces. M.S. thesis, Cornell University (1981)Google Scholar
  42. /42/.
    Lajtai, E.Z. and V.N. Lajtai: The collapse of cavities. Int.J. Rock Mech.Min.Sci. and Geomech.Abstr., 12, 81 (1975)CrossRefGoogle Scholar
  43. /43/.
    Paul, B. and M.D. Gangal: Why compressive loads on drill bits produce tensile splitting in rock. SPE 2392, Proc. Fourth Conf. on Drilling and Rock Mech., University of Texas at Austin 109 (1969)Google Scholar
  44. /44/.
    Wan, F.-D., L. Ozdemir, and L. Snyder: Prediction and verification of tunnel boring machine performance. Paper presented at Euro Tunnel, Basel, Switzerland (1978)Google Scholar
  45. /45/.
    Dick, E. and K. Peter: Generation of deep cracks in glass. J.Amer. Ceram.Soc. 52, 338 (1969)CrossRefGoogle Scholar
  46. /46/.
    Perucchio, R., A.R. Ingraffea, and J.F. Abel: Interactive computer graphic preprocessing for three-dimensional finite element analysis. Int.J.Num.Meth.Engrg. 18, 909–926 (1982)CrossRefMATHGoogle Scholar
  47. /47/.
    Perucchio, R. and A.R. Ingraffea: Interactive computer graphic preprocessing for three-dimensional boundary integral element analysis. J. of Comp. and Struct. 16, 153–166 (1983)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Anthony R. Ingraffea
    • 1
  1. 1.Hollister HallCornell University IthacaNew YorkUSA

Personalised recommendations