Advertisement

Theory of Optimal Plastic Design of Structures

  • M. A. Save
Part of the International Centre for Mechanical Sciences book series (CISM, volume 237)

Abstract

Consider a structure, the general layout of which is given (axes for systems of beams, midsurfaces for shells) together with the boundary conditions. Denote by ξ an arbitrary point on that layout, and by dξ the corresponding line or surface element. Let qi , and Qi (i = 1, ..., n) be the generalized strains, strain rates, and stresses that describe the behaviour of the structure, Qi and being chosen in such a manner that Qi is the power D of the stresses Qi on the strain rates , summation being extended over the range i = 1, ..., n.

Keywords

Circular Plate Sandwich Plate Face Sheet Specific Cost Collapse Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    DRUCKER D.C. and R.T. SHIELD, Design for Minimum Weight, in Proc. 9th Int.Cong. Applied Mechanics, Brussels, 1956, Book 5, pp. 212–222.Google Scholar
  2. [2]
    ONAT E.T., W. SCHUMANN, R.T. SHIELD, Design of Circular Plates for Minimumweight, Zeit.Ang.Math.Phys. Z.A.M.P., 8: 485, 1957.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    FREIBERGER W., B. TEKINALP, Minimum-weight Design of Circular Plates, J.Mech.Phys. Solids, 4: 294, 1956.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    EASON G., The Minimum-weight Design of Circular Sandwich Plates, Zeit.Ang.Math.Phys. Z.A.M.P., 11: 368, Zurich 1960.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    PRAGER W., R.T. SHIELD, Minimum-weight Design of Circular Plates under Arbitrary Loading, Zeit.Ang.Math.Phys. Z.A.M.P., 10: 421, 1959.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    PRAGER W., Minimum-weight Design of Plates, De Ingenieur, 67: 141, 1955.Google Scholar
  7. [7]
    FREIBERGER W, B. TEKINALP, Minimum-weight Design of Circular Plates, J.Mech.Phys. Solids, 4: 294, 1956.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    HOPKINS H.G., W. PRAGER, Limits of Economy of Material in Plates, J. Appl.Mech., 22: 3, 317, 1955.Google Scholar
  9. [9]
    KONIG J.A., R. RYCHLEWSKI, Limit Analysis of Circular Plates with Jump Non-homogeneity, Int.J. Solids and Struct., 2: 3, 493, July 1966.CrossRefGoogle Scholar
  10. [10]
    MROZ Z., On a Problem of Minimum-weight Design, Quart.Appl.Math., 19: 3 July 1961.MathSciNetGoogle Scholar
  11. [11]
    GROSS O. and W. PRAGER, Minimum-weight Design for Moving Loads, Proc. 4th U.S. Nat.Congr.Appl.Mech., 2, 1047, ASME, New York 1962.Google Scholar
  12. [12]
    SAVE M.A. and W. PRAGER, Minimum-weight Design of Beams Subjected to Fixed and Moving Loads, J.Mech.Phys. Solids, Vol. 11, pp. 255–267, 1963.CrossRefMATHGoogle Scholar
  13. [13]
    SAVE M.A. and R.T. SHIELD, Minimum-weight Design of Sandwich Shells Subjected to Fixed and Moving Loads, Proc. 11th Internat. Congress Appl.Mech., Munich 1964, Springer, Berlin, pp.; 341–349, 1966.Google Scholar
  14. [14]
    LAMBLIN D.O. and M. SAVE, Minimum-volume Plastic Design of Beams for Movable Loads, Meccanica, no. 3, Vol. VI, 1971.Google Scholar
  15. [15]
    LAMBLIN D.O., Minimum-weight Plastic Design of Continuous Beams Subjected to One Single Movable Load, J.Struct.Mech. 1 (1), 133–157 (1972).CrossRefGoogle Scholar
  16. [16]
    LAMBLIN D.O. et G. GUERLEMENT, Dimensionnement de poids minimum de plaques sandwich circulaires constitutuées d’anneaux d’épaisseur constante,Pub. no. 6; Rapport technique R6, 1971. Faculté Polytechnique de Mons.Google Scholar
  17. [17]
    MASSONNET C. et M. SAVE, Calcul plastique des constructions, Vol. 1, Structures dépendant d’un paramètre, Centre Belgo-Luxembourgeois d’Information de L’Acier, 47 me Montoyer, Bruxelles, 2ième édition, 1967.Google Scholar
  18. [18]
    SAVE M. et C. MASSONNET, Calcul plastique des constructions, Vol. 2, Structures dépendant de plusieurs paramètres, Centre Belgo-Luxembourgeois d’Information de L’Acier, 47 rue Montoyer, Bruxelles, 2ième édition, 1972.Google Scholar
  19. [19]
    ZAVELANI-ROSSI A., Sul progetto ottimale della trave continua percorsa da un treno di carichi, Costruzioni Metalliche, n. 3, 187–193, 1970.Google Scholar
  20. [20]
    SACCHI G. and A. Zavelani-Rossi, Sulla progettazione ottimale, mediante programmazione lineare, di strutture soggette a carichi fissi e viaggianti, Istituto Lombardo di Scienza e Lettere, 104, 485–497, 1970.Google Scholar
  21. [21]
    MAIER G., R. SRINIVASAN and M.A. SAVE, On Limit Design of Frames Using Linear Programming, Proc. of the Int. Symposium on Computer-aided Structural Design, Univ. of Warwick, Coventry, A2. 32 - A2. 59, 1972.Google Scholar
  22. [22]
    MAIER G., A. ZAVELANI-ROSSI and D. BENEDETTI, Optimum Plastic Design in Plane Stress Problems: A Finite Element, Linear Programming Approach, AIMETA Congress Udine 1971, and Int.J.Num. Methods in Eng., Vol. 4, 455, 1972.MATHMathSciNetGoogle Scholar
  23. [23]
    SACCHI G., G. MAIER and M. SAVE, Limit Design of Frames for Movable Loads of Linear Programming, IUTAM Symposium on Optimization in Structural Design, Warsaw, August 1973.Google Scholar
  24. [24]
    COHN M.Z., S.K. GHOSH and S.R. PARIMI, A unified approach to the theory of plastic structures, Proc. A.S.C.E. J. Eng. Mech. Div., 98, 1133, 1972.Google Scholar
  25. [25]
    MAIER G., Limit Design by Linear and Integer Programming, I.C.M.S. Courses, Saint-Venant Session, October 1974.Google Scholar
  26. [26]
    SAVE M.A., Some Aspects of Minimum-weight Design, in Engineering Plasticity, Heyman and Leckie ed, Cambridge University Press, pp. 611–626, 1968.Google Scholar
  27. [27]
    MORLEY C.T., The Minimum Reinforcement of Concrete Slabs, Int. Journ. of Mech. Sciences, Vol. 8, n. 4, pp. 305–319, April 1966.CrossRefGoogle Scholar
  28. [28]
    SACCHI G. and M. SAVE, Le problème du poids minimum d’armature des plaques en béton armé, Mémoires de l’Association Internationele des Ponts et Charpentes, Vol. 29, I, pp. 157–166, 1969.Google Scholar
  29. [29]
    MORLEY C.T., Optimum Reinforcement of Concrete Slabs Element Against Combinations of Moments and Membrane Forces, Mag. Concrete Research, Vol. 22, n. 72, pp. 155–162, Sept. 1970.CrossRefGoogle Scholar
  30. [30]
    PAVICIC N.J. and S.C. BATTERMAN, Optimum Design of Fiber-reinforced Shells of Revolution, IUTAM Symposium on Optimization in Structural Design, Warsaw, August 1973.Google Scholar
  31. [31]
    ROZVANY G.I.N. and S.R. ADIDAM, Rectangular Grillages of Least Weight, Proc.Am.Soc. Civil Eng., Journ. Eng.Mech. Div., pp 1337–1351, December 1972.Google Scholar
  32. [32]
    ROZVANY, G.I.N., Grillages of Maximum Strength and Maximum Stiffness, Int.J. of Mech. Sci., Vol. 14, pp. 651–666, 1972.CrossRefGoogle Scholar
  33. [33]
    ROZVANY G.I.N., R.D. HILL and C. GANGADHARAIAH, Grillages of Least Weight Simply Supported Boundaries, Int.J. of Mech. Sci., Vol. 15, pp. 665–667, 1973.CrossRefGoogle Scholar
  34. [34]
    ROZVANY, G.I.N., Optimal Force Transmission by Flexure: The Present State of Knowledge, IUTAM Symposium on Optimization Structural Design, Warsaw, August 1973.Google Scholar
  35. [35]
    HEYMAN, J., Minimum-weight of Frames under Shakedown Loading, Proc.Am.Soc. Civil Eng., Journ. Eng. Mech. Div., pp. 1790–1 to 24, October 1958.Google Scholar
  36. [36]
    BORKAUSKAS A., and J. ATKOCIUNAS, Optimal Design for Cyclic Loaing, IUTAM Symposium on Optimization in Structural Design, Warsaw, August 1973.Google Scholar
  37. [37]
    KONIG, J.A., On Optimum Shakedown Design, IUTAM Symposium on Optimization in Structural Design, Warsaw, August 1973.Google Scholar
  38. [38]
    ROZVANY G.LN., Concave Programming in Structural Optimization, Int.J.Mech.Sci., Vol. 12, pp 191–142, 1970.Google Scholar
  39. [39]
    MARTIN J.B. and A.R.S. PONTER, The Optimal Design of a Class of Beam Structures for a Non-Convex Cost Function, Journal de Mécanique, Vol. II, n. 2, pp. 341–360, juin 1972.Google Scholar
  40. [40]
    SAVE M.A., A General Criterion for Optimal Structural Design, Journ. of Opt. Theory and Appl. (J.O.T.A.), January 1975.Google Scholar
  41. [41]
    SACCHI G., Formulation variationnelle du poids minimal des structures, Journal de Mécanique, Vol. 10, 4–1, mars 1971.Google Scholar
  42. [42]
    MICHELL A.G.M., The Limits of Economy of Materials in Frame Structures, Phil.Mag.S., Vol. 8, pp 589–597, 1904.CrossRefMATHGoogle Scholar
  43. [43]
    HEMP W.S., Optimum Structures, Oxford Engineering Sciences Seires, 1973.Google Scholar
  44. [44]
    HU T.C. and RT. SHIELD, Minimum Volume of Discs, Zeitschrift fu Angewandete Math. und Physik, (Z.A.M.P.), Vol. 12, Fasc. 5, 1961.Google Scholar
  45. [45]
    DORN, W.S., RE. GOMORY and H.J. GREENBERG, Automatic Design of Optimal Structures, Journal de Mécanique, Vol. 3, pp. 25–51, 1964.Google Scholar
  46. [46]
    PRAGER, W., The Determination of Optimal Layout of a Structure, I.C.M.S. Courses, Saint-Venant Session, October 1974.Google Scholar
  47. [47]
    ZAVELANI, A., G. MAIER and L. BINDA, Shape Optimization of Plastic Structures by Zero-one Programming, IUTAM Symposium on Optimization in Structural Design, Warsaw, August 1973.Google Scholar
  48. [48]
    PRAGER W., Conditions for Structural Optimality, Computers and Structures, Vol. 2, pp. 833–840. Pergamon Press 1972.Google Scholar
  49. [49]
    PRAGER W., An Introduction to Plasticity, Addison-Wesley Pub. Comp. Inc. USA, 1959.MATHGoogle Scholar
  50. [50]
    SAVE M. and C.H. MASSONNET, Plastic Analysis and Design of Plates, Shells and Disks., North Holland Pub. Comp. Amsterdam, 1972.MATHGoogle Scholar
  51. [51]
    FLUGGE W., Handbook of Engineering Mechanics, McGraw-hill Book Comp., Inc. New York, 1962, Ch. 44.Google Scholar
  52. [52]
    SAVE M., A Unified Formulation of the Theory of Optimal Plastic Design with Convex Cost Function, J.Struct.Mech., 1 (2), pp. 267–276, 1972.CrossRefGoogle Scholar
  53. [53]
    MARCAL P.V. and W. PRAGER, A Method of Optimal Design, J.Mecan. 3 (4), 509–530 (1964).Google Scholar
  54. [54]
    PRAGER W. and RT. SHIELD, Optimal Design of Multi-purpose Structures, Int.J. Structures, 1968, Vol. 4, pp. 469 to 475.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • M. A. Save
    • 1
  1. 1.Faculté Polytechnique de MonsBelgium

Personalised recommendations