Advertisement

General Methods of Optimization in Structural Mechanics

  • Pierre Brousse
Part of the International Centre for Mechanical Sciences book series (CISM, volume 237)

Abstract

Numerous problems of structural optimization are linear or can reasonably be approached by linear problems. This is why linear optimization is very important.

Keywords

Euler Equation Normed Space Dual Problem Feasible Region Linear Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    DANTZIG G.B.: Linear Programming and Extensions,New Jersey University Press, 1963.Google Scholar
  2. [2]
    GASS S.I.: Linear Programming,McGraw Hill, 2nd edition, 1964.Google Scholar
  3. [3]
    HADLEY G.: Linear Programming,Addison-Wesley, 1962.Google Scholar
  4. [4]
    MAIER G., SRIVIVASAN R., SAVE M.: On Limit Design of Frames Using Linear Programming, International Symposium on Computer-Aided Design, University of Warwick, England 10–14 July 1972.Google Scholar
  5. [5]
    SIMONNARD M.: Programmation Linéaire,Dunod, 1962.Google Scholar
  6. [1]
    ABADIE J.: Nonlinear Programming,North Holland, 1967.Google Scholar
  7. [2]
    ARROW K.J., HURWICZ L., UZAWA H.: Studies in Linear and Nonlinear Programming, Stanford University Press, 1958.Google Scholar
  8. [3]
    BROUSSE P.: Optimisation des structures mécaniques, Les méthodes d’optimisation dans la construction, Séminaire du Collège International des Sciences de la Construction, Saint-Rémy-lès-Chevreuse, France, 6–9 novembre 1973.Google Scholar
  9. [4]
    HADLEY G.: Nonlinear and dynamic programming,Addison-Wesley, 1964.Google Scholar
  10. [5]
    MANGASARIAN O.L.: Nonlinear Programming,McGraw-Hill, 1969.Google Scholar
  11. [6]
    PRAGER W.: Optimality criteria derived from classical extremum principles, An introduction to structural optimization, University of Waterloo, 1968.Google Scholar
  12. [7]
    VAJDA S.: Tests of Optimality in Constrained Optimisation, J. Inst. Math. Applic., 13, p. 187–200, 1974.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • Pierre Brousse
    • 1
  1. 1.Université de Paris VIFrance

Personalised recommendations