Computational Methods for Soft Tissue Biomechanics

  • Taras P. Usyk
  • Andrew D. McCulloch
Part of the International Centre for Mechanical Sciences book series (CISM, volume 441)


Computational biomechanics provides a framework for modeling the function of tissues that integrates structurally from cell to organ system and functionally across the physiological processes that affect tissue mechanics or are regulated by mechanical forces. We develop an integrative computational strategy for soft tissue based on the finite element method, using the biomechanics of the heart as a case study.


Cardiac Muscle Ventricular Myocardium Sarcomere Length Stretch Ratio Septal Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, D. G., and Orchard, C. H. (1987). Myocardial contractile function during ischemia and hypoxia. Circ. Res. 60(2): 153–68.CrossRefGoogle Scholar
  2. Arts, T., Reneman, R. S., and Veenstra, P. C. (1979). A model of the mechanics of the left ventricle. Ann. Biomed. Engr. 7:299.CrossRefGoogle Scholar
  3. Arts, T., Veenstra, P. C., and Reneman, R. S. (1982). Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am. J. Physiol. 243:H379.Google Scholar
  4. Backx, P. H., Gao, W. D., Azan-Backx, M. D., and Marban, E. (1995). The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae. J. Gen. Physiol. 105(1): 1–19.CrossRefGoogle Scholar
  5. Bers, D. M. (1991). Excitation-Contraction Coupling and Cardiac Contractile Force. Dordrecht: Kluwer.Google Scholar
  6. Bogen, D. K., Rabinowitz, S. A., Needleman, A., McMahon, T. A., and Abelmann, W. H. (1980). An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ. Res. 47:728–741.CrossRefGoogle Scholar
  7. Brutsaert, D. L., and Sys, S. U. (1989). Relaxation and diastole of the heart. Physiol. Rev. 69(4): 1228–315.Google Scholar
  8. Chadwick, R. S. (1982). Mechanics of the left ventricle. Biophys. J. 39(3):279–288.CrossRefGoogle Scholar
  9. Costa, K. D., Hunter, P. J., Rogers, J. M., Guccione, J. M., Waldman, L. K., and McCulloch, A. D. (1996a). A three-dimensional finite element method for large elastic deformations of ventricular myocardium: I-Cylindrical and spherical polar coordinates. J. Biomech. Engr. 118(4):452–463.CrossRefGoogle Scholar
  10. Costa, K. D., Hunter, P. J., Wayne, J. S., Waldman, L. K., Guccione, J. M., and McCulloch, A. D. (1996b). A three-dimensional finite element method for large elastic deformations of ventricular myocardium: II-Prolate spheroidal coordinates. J. Biomech. Engr. 118(4):464–472.CrossRefGoogle Scholar
  11. de Tombe, P. P., and ter Keurs, H. E. (1992). An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium. J. Physiol. 454:619–42.Google Scholar
  12. Demer, L. L., and Yin, F. C. (1983). Passive biaxial mechanical properties of isolated canine myocardium. J. Physiol. 339:615–630.Google Scholar
  13. Demiray, H. (1976). Large deformation analysis of some basic problems in biophysics. Bull. Math. Biol. 38(6):701–712.MATHGoogle Scholar
  14. Dokos, S., LeGrice, I. J., Smaill, B. H., Kar, J., and Young, A. A. (2000). A triaxial-measurement shear-test device for soft biological tissues. J. Biomech. Engr. 122(5):471–8.CrossRefGoogle Scholar
  15. Fung, Y. C. (1981). Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag.CrossRefGoogle Scholar
  16. Gaasch, W. H., and LeWinter, M. M. (1994). Left Ventricular Diastolic Dysfunction and Heart Failure. Philadelphia: Lea & Febiger.Google Scholar
  17. Gilbert, J. C., and Glantz, S. A. (1989). Determinants of left ventricular filling and of the diastolic pressure-volume relation. Circ. Res. 64(5):827–52.CrossRefGoogle Scholar
  18. Glantz, S.A., and Parmley, W. W. (1978). Factors which affect the diastolic pressure-volume curve. Circ. Res. 42(2): 171–80.CrossRefGoogle Scholar
  19. Glantz, S. A., Misbach, G. A., Moores, W. Y., Mathey, D. G., Lekven, J., Stowe, D. F., Parmley, W. W., and Tyberg, J. V. (1978). The pericardium substantially affects the left ventricular diastolic pressure-volume relationship in the dog. Circ. Res. 42(3):433–41.CrossRefGoogle Scholar
  20. Glass, L., Hunter, P. J., and McCulloch, A. D. (1991). Theory of Heart: Biomechanics, Biophysics and Nonlinear Dynamics of Cardiac Function. New York: Springer-Verlag.CrossRefGoogle Scholar
  21. Guccione, J. M., and McCulloch, A. D. (1993). Mechanics of active contraction in cardiac muscle: Part I-Constitutive relations for fiber stress that describe deactivation. J. Biomech. Engr. 115(1):72–81.CrossRefGoogle Scholar
  22. Guccione, J. M., McCulloch, A. D., and Waldman, L. K. (1991). Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Engr. 113(1):42–55.CrossRefGoogle Scholar
  23. Gupta, K. B., Ratcliffe, M. B., Fallen, M. A., Edmunds Jr., L. H., and Bogen, D. K. (1994). Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circ. 89(5):2315–26.CrossRefGoogle Scholar
  24. Hill, A. V. (1938). Time heart of shortenning and the dynamic constants of muscle. Proc. Roy. Soc. 126:136–195.CrossRefGoogle Scholar
  25. Hill, A. V. (1970). First and Last Experiments in Muscle Mechanics. Cambridge: University Press.Google Scholar
  26. Hill, J. M. (1973). Partial solutions of finite elasticity — three dimensional deformations. J. Appl. Math. Phys. 24:609–618.CrossRefMATHGoogle Scholar
  27. Holmes, J. W., Yamashita, H., Waldman, L. K., and Covell, J. W. (1994). Scar remodeling and transmural deformation after infarction in the pig. Circ. 90(1):411–420.CrossRefGoogle Scholar
  28. Humphrey, J. D., and Yin, F. C. (1987). A new constitutive formulation for characterizing the mechanical behavior of soft tissues. Biophys. J. 52(4):563–70.CrossRefGoogle Scholar
  29. Humphrey, J. D., Strumpf, R. K., and Yin, F. C. (1990a). Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Engr. 112(3):340–6.CrossRefGoogle Scholar
  30. Humphrey, J. D., Strumpf, R. K., and Yin, F. C. (1990b). Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Engr. 112(3):333–9.CrossRefGoogle Scholar
  31. Hunter, P. J., McCulloch, A. D., Nielsen, P. M. F., and Smaill, B. H. (1988). A finite element model of passive ventricular mechanics. In Spilker, R. L., and Simon, B. R., eds., Computational Methods in Bioengineering, volume 9. Chicago: ASME. 387–397.Google Scholar
  32. Hunter, P. J., McCulloch, A. D., and ter Keurs, H. E. (1998). Modelling the mechanical properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69(2–3):289–331.CrossRefGoogle Scholar
  33. Huxley, A. F. (1957). Muscle structure and theories of contraction. Prog. Biophys. Chem. 7:255–318.Google Scholar
  34. Ingels Jr., N. B., Daughters 2nd, G. T., Stinson, E. B., and Alderman, E. L. (1975). Measurement of midwall myocardial dynamics in intact man by radiography of surgically implanted markers. Circ. 52(5):859–67.CrossRefGoogle Scholar
  35. Janicki, J. S., and Weber, K. T. (1980). The pericardium and ventricular interaction, distensibility, and function. Am. J. Physiol. 238(4):H494–503.Google Scholar
  36. Karlon, W. J., Covell, J. W., McCulloch, A. D., Hunter, P. J., and Omens, J. H. (1998). Automated measurement of myofiber disarray in transgenic mice with ventricular expression of ras. Anat. Rec. 252(4):612–25.CrossRefGoogle Scholar
  37. Karlon, W. J., McCulloch, A. D., Covell, J. W., Hunter, P. J., and Omens, J. H. (2000). Regional dysfunction correlates with myofiber disarray in transgenic mice with ventricular expression of ras. Am. J. Physiol. Heart Circ. Physiol. 278(3):H898–906.Google Scholar
  38. Karlon, W. J. (1998). Influence of Myocardial Fiber Organization on Ventricular Function. Ph.d., University of California San Diego.Google Scholar
  39. Kentish, J. C., ter Keurs, H. E., Ricciardi, L., Bucx, J. J., and Noble, M. I. (1986). Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ. Res. 58(6):755–68.CrossRefGoogle Scholar
  40. Kruger, G. W., and Pollack, J. H. (1975). Myocardial sarcomere dynamics during isometric contraction. J. Physiol 51:627–643.Google Scholar
  41. Landesberg, A., and Sideman, S. (1994). Coupling calcium binding to troponin C and cross-bridge cycling in skinned cardiac cells. Am. J. Physiol. 266(3 Pt 2):H1260–71.Google Scholar
  42. Landesberg, A., Markhasin, V. S., Beyar, R., and Sideman, S. (1996). Effect of cellular inhomogeneity on cardiac tissue mechanics based on intracellular control mechanisms. Am. J. Physiol 270(3 Pt 2):H1101–14.Google Scholar
  43. Lee, M. C., Fung, Y. C., Shabetai, R., and LeWinter, M. M. (1987). Biaxial mechanical properties of human pericardium and canine comparisons. Am. J. Physiol. 253(1 Pt 2):H75–82.Google Scholar
  44. LeGrice, I. J., Smaill, B. H., Chai, L. Z., Edgar, S. G., Gavin, J. B., and Hunter, P. J. (1995a). Laminar structure of the heart: Ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269(2 Pt 2):H571–82.Google Scholar
  45. LeGrice, I. J., Takayama, Y., and Covell, J. W. (1995b). Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ. Res. 77:182–193.CrossRefGoogle Scholar
  46. Legrice, I. J., Hunter, P. J., and Smaill, B. H. (1997). Laminar structure of the heart: A mathematical model. Am. J. Physiol. 272(5 Pt 2):H2466–76.Google Scholar
  47. Lin, I. E., and Taber, L. A. (1994). Mechanical effects of looping in the embryonic chick heart. J. Biomech. 27(3):311–21.CrossRefGoogle Scholar
  48. Lin, D. H., and Yin, F. C. (1998). A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Engr. 120(4):504–17.CrossRefGoogle Scholar
  49. Maron, B. J., Bonow, R. O., Cannon 3rd, R. O., Leon, M. B., and Epstein, S. E. (1987). Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1). New Engl. J. Med. 316(13):780–9.CrossRefGoogle Scholar
  50. Maruyama, Y., Ashikawa, K., Isoyama, S., Kanatsuka, H., Ino-Oka, E., and Takishima, T. (1982). Mechanical interactions between four heart chambers with and without the pericardium in canine hearts. Circ. Res. 50(1):86–100.CrossRefGoogle Scholar
  51. May-Newman, K., Omens, J. H., Pavelec, R. S., and McCulloch, A. D. (1994). Three-dimensional transmural mechanical interaction between the coronary vasculature and passive myocardium in the dog. Circ. Res. 74(6): 1166–78.CrossRefGoogle Scholar
  52. Mazhari, R., Omens, J. H., Covell, J. W., and McCulloch, A. D. (2000). Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovasc. Res. 47(2):284–93.CrossRefGoogle Scholar
  53. ter Keurs, H. E., Rijnsburger, W. H., van Heuningen, R., and Nagelsmit, M. J. (1980). Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ. Res. 46(5):703–14.CrossRefGoogle Scholar
  54. McCulloch, A. D., and Omens, J. H. (1991). Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium. J. Biomech. 24(7):539–48.CrossRefGoogle Scholar
  55. McCulloch, A. D., Smaill, B. H., and Hunter, P. J. (1989). Regional left ventricular epicardial deformation in the passive dog heart. Circ. Res. 64:721–733.CrossRefGoogle Scholar
  56. McLean, M., Ross, M. A., and Prothero, J. (1989). Three-dimensional reconstruction of the myofiber pattern in the fetal and neonatal mouse heart. Anat. Rec. 224(3):392–406.CrossRefGoogle Scholar
  57. Meier, G. D., Bove, A. A., Santamore, W. P., and Lynch, P. R. (1980a). Contractile function in canine right ventricle. Am. J. Physiol. 239(6):H794–804.Google Scholar
  58. Meier, G. D., Ziskin, M. C., Santamore, W. P., and Bove, A. A. (1980b). Kinematics of the beating heart. IEEE Trans. Biomed. Engr. 27(6):319–29.CrossRefGoogle Scholar
  59. Mirsky, I., and Rankin, J. S. (1979). The effects of geometry, elasticity, and external pressures on the diastolic pressure-volume and stiffness-stress relations. How important is the pericardium? Circ. Res. 44(5):601–11.CrossRefGoogle Scholar
  60. Mirsky, I. (1976). Assessment of passive elastic stiffness of cardiac muscle: Mathematical concepts, physiologic and clinical considerations, directions of future research. Prog. Cardiovasc. Dis. 18(4):277–308.CrossRefGoogle Scholar
  61. Nevo, E., and Lanir, Y. (1989). Structural finite deformation model of the left ventricle during diastole and systole. J. Biomech. Engr. 111(4):342–9.CrossRefGoogle Scholar
  62. Nielsen, P. M., Grice, I. J. L., Smaill, B. H., and Hunter, P. J. (1991). Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260(4 Pt 2):H1365–78.Google Scholar
  63. Novak, V. P., Yin, F. C., and Humphrey, J. D. (1994). Regional mechanical properties of passive myocardium. J. Biomech. 27(4):403–12.CrossRefGoogle Scholar
  64. O’Dell, W. G., and McCulloch, A. D. (2000). Imaging three-dimensional cardiac function. Ann. Rev. Biomed. Eng. 2:431–56.CrossRefGoogle Scholar
  65. Oden, J. T. (1972). Finite Elements of Nonlinear Continua. New York: McGraw-Hill Book Co.MATHGoogle Scholar
  66. Ogden, R. W. (1984). Non-Linear Elastic Deformations. New York: Ellis Horwood.Google Scholar
  67. Omens, J. H., May, K. D., and McCulloch, A. D. (1991). Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am. J. Physiol. 261(3 Pt 2):H918–28.Google Scholar
  68. Omens, J. H., MacKenna, D. A., and McCulloch, A. D. (1993). Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J. Biomech. 26(6):665–76.CrossRefGoogle Scholar
  69. Panerai, R. B. (1980). A model of cardiac muscle mechanics and energetics. J. Biomech. 13(11):929–40.CrossRefGoogle Scholar
  70. Patterson, S. W., and Starling, E. H. (1914). On the mechanical factors which determine the output of the ventricles. J. Physiol. 48:357.Google Scholar
  71. Peng, S. H., and Chang, W. V. (1997). A compressible approach in finite element analysis of rubber-elastic materials. Comput. & Structures 62:573–593.CrossRefMATHGoogle Scholar
  72. Ruegg, J. C. (1988). Calcium in Muscle Activation: A Comparative Approach. Berlin: Springer-Verlag.Google Scholar
  73. Saffitz, J. E., Kanter, H. L., Green, K. G., Tolley, T. K., and Beyer, E. C. (1994). Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ. Res. 74(6): 1065–70.CrossRefGoogle Scholar
  74. Sagawa, K. (1988). Cardiac Contraction and the Pressure-Volume Relationship. New York: Oxford University Press.Google Scholar
  75. Salisbury, P. F., Cross, C. E., and Rieben, P. A. (1960). Influence of coronary artery pressure upon myocardial elasticity. Circ. Res. 8:794.CrossRefGoogle Scholar
  76. Schmid, P., Stuber, M., Boesiger, P., Hess, O. M., and Niederer, P. (1995). Determination of displacement, stress- and strain-distribution in the human heart: A FE-model on the basis of MR imaging. Technol. Health Care 3(3):209–14.Google Scholar
  77. Schoenberg, M. (1980). Geometrical factors influencing muscle force development. II. Radial forces. Biophys. J. 30(1):69–77.CrossRefMathSciNetGoogle Scholar
  78. Simpson, G., Fisher, C., and Wright, D. K. (2001). Modeling the interactions between a prosthetic socket, polyurethane liners and the residual limb in transtibial amputees using non-linear finite element analysis. Biomed. Sci. Instrum. 37:343–7.Google Scholar
  79. Slinker, B. K., and Glantz, S. A. (1986). End-systolic and end-diastolic ventricular interaction. Am. J. Physiol. 251(5 Pt 2):H1062–75.Google Scholar
  80. Sonnenblick, E. H., Napolitano, L. M., Daggett, W. M., and Cooper, T. (1967). An intrinsic neuromuscular basis for mitral valve motion in the dog. Circ. Res. 21(1):9–15.CrossRefGoogle Scholar
  81. Spencer, A. J. M. (1980). Continuum Mechanics. London: Lonman Press.MATHGoogle Scholar
  82. Spotnitz, H. M., Spotnitz, W. D., Cottrell, T. S., Spiro, D., and Sonnenblick, E. H. (1974). Cellular basis for volume related wall thickness changes in the rat left ventricle. J. Mol. Cell Cardiol. 6(4):317–31.CrossRefGoogle Scholar
  83. Streeter Jr., D. D., and Hanna, W. T. (1973). Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry. Circ. Res. 33(6):639–55.CrossRefGoogle Scholar
  84. Streeter Jr., D. D., Spotnitz, H. M., Patel, D. P., Ross Jr., J., and Sonnenblick, E. H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24(3):339–47.CrossRefGoogle Scholar
  85. Streeter Jr., D. D. (1979). Gross morphology and fiber geometry of the heart. In Bethesda, M. D., ed., Handbook of Physiology. American Physiological Society. 61.Google Scholar
  86. T.R Usyk and A.D. McCulloc Taber, L. A. (1991). On a nonlinear theory for muscle shells: Part II-Application to the beating left ventricle. J. Biomech. Engr. 113(1):63–71.CrossRefGoogle Scholar
  87. Torrent-Guasp, F. (1973). The Cardiac Muscle. Madrid: Juan March Foundation.Google Scholar
  88. Tozeren, A. (1985). Continuum rheology of muscle contraction and its application to cardiac contractility. Biophys. J. 47(3):303–9.CrossRefGoogle Scholar
  89. Usyk, T. P., Mazhari, R., and McCulloch, A. D. (2000). Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61(1/3): 143–164.CrossRefMATHGoogle Scholar
  90. Usyk, T. P., Omens, J. H., and McCulloch, A. D. (2001). Regional septal dysfunction in a three-dimensional computational model of focal myofiber disarray. Am. J. Physiol. Heart Circ. Physiol. 281(2):H506–14.Google Scholar
  91. Vetter, F., and McCulloch, A. D. (1998). Three-dimensional analysis of regional cardiac function: A model of the rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69:157.CrossRefGoogle Scholar
  92. Vetter, F. J., and McCulloch, A. D. (2000). Three-dimensional stress and strain in passive rabbit left ventricle: A model study. Ann. Biomed. Engr. 28(7):781–92.CrossRefGoogle Scholar
  93. Waldman, L. K., Fung, Y. C., and Covell, J. W. (1985). Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ. Res. 57(1): 152–63.CrossRefGoogle Scholar
  94. Weis, S. M., Omens, J. H., and McCulloch, A. D. (2001). Ventricular tissue adaptation associated with collagen deficiency in the osteogenesis imperfecta murine. J. Biomech. Engr. in press.Google Scholar
  95. Wong, A. Y. (1971). Mechanics of cardiac muscle, based on Huxley’s model: Mathematical stimulation of isometric contraction. J. Biomech. 4(6):529–40.CrossRefGoogle Scholar
  96. Wong, A. Y. (1972). Mechanics of cardiac muscle, based on Huxley’s model: Simulation of active state and force-velocity relation. J. Biomech. 5(1): 107–17.CrossRefGoogle Scholar
  97. Yellin, E. L., Hori, M., and Yoran, C. (1986). Left ventricular relaxation in the filling and nonfilling intact canine heart. Am. J. Physiol. 250:620.Google Scholar
  98. Yin, F. C., Chan, C. C., and Judd, R. M. (1996). Compressibility of perfused passive myocardium. Am. J. Physiol. 271(5 Pt 2):H1864–70.Google Scholar
  99. Young, A. A., and Axel, L. (1992). Three-dimensional motion and deformation of the heart wall: Estimation with spatial modulation of magnetization — a model-based approach. Radiology 185(1):241–7.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Taras P. Usyk
    • 1
  • Andrew D. McCulloch
    • 1
  1. 1.Department of BioengineeringUniversity of California San DiegoLa JollaUSA

Personalised recommendations