Remodeling of Arteries in Response to Changes in their Mechanical Environment

  • Alexander Rachev
Part of the International Centre for Mechanical Sciences book series (CISM, volume 441)


Arteries are subjected to mechanical forces, which may vary in time. A long-lasting alteration in pressure and/or blood flow rate causes an adaptive response termed remodeling. At the macro-level remodeling is manifest as a change in arterial geometry and a change in mechanical properties of the arterial tissue. A review of the main experimental findings concerning pressure- and flow-induced remodeling of large arteries is presented. Theoretical models of volumetric and global growth based on a continuum mechanics approach are discussed. Some specific biomechanical problems of arterial remodeling associated with abnormal narrowing of the arterial lumen are considered.


Wall Shear Stress Arterial Wall Circumferential Stress Mechanical Environment Stretch Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achakri, H., Rachev, A., Stergiopulos, N., and Meister, J. J. (1994). A theoretical investigation of low frequency diameter oscillations of muscular arteries. Ann. Biomed. Engr. 22:253–263.CrossRefGoogle Scholar
  2. Albridge, H. E., and Trimble, A. S. (1971). Progression of coronary artery lesions to total occlusion after aorta-coronary saphenous vein bypass grafting. J. Thome. Cardiovasc. Surg. 6:7–11.Google Scholar
  3. Berry, C. L., and Greenwald, S. E. (1976). Effects of hypertension on the static mechanical properties and chemical composition of rat aorta. Cardiovasc. Res. 10:437–451.CrossRefGoogle Scholar
  4. Brownlee, R. D., and Langille, B. L. (1991). Arterial adaptation to altered blood flow. Canad. J. Physiol. Pharm. 69:978–983.CrossRefGoogle Scholar
  5. Chandran, K. B., Gao, D., Han, G., Baraniewski, H., and Corson, J. D. (1992). Finite-element analysis of arterial anastomoses with vein, dacron and PTFE grafts. Med. Biol. Eng. Comput. 30:413–418.CrossRefGoogle Scholar
  6. Chuong, C. J., and Fung, Y. C. (1986). On residual stress in arteries. J. Biomech. Engr. 108:189–192.CrossRefGoogle Scholar
  7. Cox, R. H. (1978). Regional variation of series elasticity in canine arterial smooth muscle. Am. J. Physiol. 234:542–551.Google Scholar
  8. DeWeese, J. A. (1985). Anastomotic neointimal fibrous hyperplasia. In Brenhard, V. M., and Towne, J. B., eds., Complications in vascular surgery, 157–170. Orlando: Grune and Stratton.Google Scholar
  9. Dobrin, P. B. (1973). Influence of initial length on length-tension relationship of vascular smooth muscle. Am. J. Physiol. 225:659–663.Google Scholar
  10. Echave, V., Koornick, A. R., Haimov, M., and Jacobson, J. H. (1979). Intimai hyperplasia as a complication of the use of the polytetrafluoroethylene graft for femoral-popliteal bypass. Surgery 86:791–798.Google Scholar
  11. Fath, W., Burkhart, H. M., Miller, S. C., Dalshing, M. C., and Unthank, J. L. (1998). Wall remodeling after wall shear rate normalization in rat mesenteric collaterals. J. Vasc. Res. 35:257–264.CrossRefGoogle Scholar
  12. Fridez, P., Makino, A., Miyazaki, H., Meister, J. J., Hayashi, K., and Stergiopulos, N. (2001a). Short-term biomechanical adaptation of the rat carotid to acute hypertension: contribution of smooth muscle. Ann. Biomed. Engr. 29(1):26–34.CrossRefGoogle Scholar
  13. Fridez, P., Rachev, A., Meister, J. J., Hayashi, K., and Stergiopulos, N. (2001b). Model of geometrcal and smooth muscle tone adaptation of carotid artery to step change in pressure. Am. J. Physiol. Heart Circ. Physiol. 280:H2752–H2760.Google Scholar
  14. Fung, Y. C., and Liu, S. Q. (1989). Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ. Res. 65:1340–1349.CrossRefGoogle Scholar
  15. Fung, Y. C., and Liu, S. Q. (1991). Change of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. 70:2455–2470.CrossRefGoogle Scholar
  16. Fung, Y. C., Liu, S. Q., and Zhou, J. B. (1993). Remodeling of the constitutive equation while a blood vessel remodels itself under stress. J. Biomech. Engr. 115:453–459.CrossRefGoogle Scholar
  17. Fung, Y. C. (1990). Biomechanics. Motion, Flow, Stress and Growth. New York: Springer-Verlag.MATHGoogle Scholar
  18. Fung, Y. C. (1991). What are the residual stresses doing in our blood vessels? Ann. Biomed. Engr. 19:237–249.CrossRefMathSciNetGoogle Scholar
  19. Fung, Y. C. (1996). Biomechanics. Circultion, 2nd ed. New York Berlin Heidelberg: Springer-Verlag.Google Scholar
  20. Glagov, S., Zarnis, C. K., Masawa, N., Xu, C. P., Bassiouny, H., and Giddens, D. P. (1993). Mechanical functional role of non-atherosclerotic intimai thickening. Frontiers Med. Biol. Eng. 1:37–43.Google Scholar
  21. Green, A. E., and Adkins, J. E. (1970). Large Elastic Deformations and Nonlinear Continuum Mechanics. London: Oxford University Press.Google Scholar
  22. Greisler, H., Ellinger, J., Schwarcz, T., Golan, A., Raymond, R., and Kim, D. (1987). Arterial regeneration over polydioxanone prostheses in the rabbit. Arch. Surg 122:715–721.CrossRefGoogle Scholar
  23. Greisler, H., Endean, E., Klosak, J., Ellinger, J., Dennis, J., Buttle, K., and Kim, D. (1988). Polyglactin910/polydioxanone bicomponent totally resorbable vascular prostheses. J. Vasc. Surg. 7:697–705.Google Scholar
  24. Han, H.-C., and Ku, D. N. (2001). Contractile response of arteries subjected to hyperensive pressure in seven-day organ culture. Ann. Biomed. Engr. 29:467–475.CrossRefGoogle Scholar
  25. Han, H.-C., Vito, R. P., Micheal, K., and Ku, D. N. (2000). Axial stretch increases cell proliferation in arteries in organ culture. Advances in Bioengineering, ASME 48:63–64.Google Scholar
  26. Harrigan, T. P. (1997). Regulatory interction between myogenic and shear-sensitive arterial segments: conditions for stable steady states. Ann. Biomed. Engr. 25:635–643.CrossRefGoogle Scholar
  27. Hasson, J. E., Megerman, J., and Abbott, W. M. (1985). Increased compliance near vascular anastomoses. J. Vasc. Surg. 2:419–423.Google Scholar
  28. Hayashi, K., Makino, A., Kakoi, D., and Miyazaki, H. (2001). Remodeling of arterial wall in response to blood pressure and blood flow changes. Proceeding of 2001 Summer Bioengineering Conference 819–820.Google Scholar
  29. Hayashi, K. (2000). Private communication.Google Scholar
  30. Hill, A. V. (1939). The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. London Ser.B 126:136–195.CrossRefGoogle Scholar
  31. Hoffman, R., Mintz, G. S., Dussaillant, G. R., Popma, J. J., Pichard, A. D., Satler, L. F., Kent, K. M., Griffinn, J., and Leon, M. B. (1996). Patterns and mechanisms of in-stent restenosis. a serial intravascular ultrasound study. Circ. 94:1247–1254.CrossRefGoogle Scholar
  32. Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48.CrossRefMATHMathSciNetGoogle Scholar
  33. Hutchins, G. M., Miner, M. M., and Boitnott, J. K. (1976). Vessel caliber and branch-angle of human coronary artery branch-points. Circ. Res. 38:572–576.CrossRefGoogle Scholar
  34. Kamiya, A., and Ando, J. (1996). Response of vascular endothelial cells to fluid shear stresses: Mechanism. In Hayashi, K., Kamiya, A., and Ono, K., eds., Biomechanics, Functional Adaptation and Remodeling, 9–10. Tokyo: Springer-Verlag.Google Scholar
  35. Kamiya, A., and Togawa, T. (1980). Adaptive regulation of wall shear stress to flow change in canine carotid artery. Am. J. Phys. 239:14–21.Google Scholar
  36. Keenen, R., and Rodbard, S. (1973). Competition between collateral vessels. Cardiovasc. Res. 7:670–675.CrossRefGoogle Scholar
  37. Kirilova, M., and Rachev, A. (2002). A theoretical investigation of the effects of bioresorbable material on process of neo-artery regeneration. Theoretical and Applied Mechanics (Bulgaria), in press.Google Scholar
  38. Langille, B. L., and O’Donnell, F. (1986). Reductions in arterial diameter produced by chronic decrease in blood flow are endothelium-dependent. Science Wash. DC 231:405–407.CrossRefGoogle Scholar
  39. Langille, B. L., Bendeck, M. P., and Keeley, W. (1989). Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. Am. J. Physiol. 256:931–939.Google Scholar
  40. Langille, B. L. (1993). Remodeling of developing and mature arteries: Endothelium, smooth muscle and matrix. J. Cardiovasc. Pharmacol. 21:11–17, (Suppl. 1).CrossRefGoogle Scholar
  41. Langille, B. L. (1995). Blood flow-induced remodeling of the artery wall. In Bevan, J. A., Kaley, G., and Rubanyi, G., eds., Flow-dependent regulation of vascular function, 227–299. New York, Oxford: American Society of Mechanical Engineers.Google Scholar
  42. Lehoux, S., and Tedgui, A. (1998). Signal transduction of mechanical stresses in the vascular wall. Hypertension 32:338–345.CrossRefGoogle Scholar
  43. Leung, D. Y. M., Glagov, S. G., and Mathews, M. B. (1976). Cycling stretching stimulates synthesis of components by arterial smooth muscle cells in vivo. Science 116:455–477.Google Scholar
  44. Liu, S. Q., and Fung, Y. C. (1989). Relationship between hypertension, hypertrophy and opening angle of zero-stress state of arteries following aortic constriction. J. Biomech. Engr. 111:325–335.CrossRefGoogle Scholar
  45. Masuda, H., Bassiouny, H., Glagov, S., and Zarins, C. K. (1989). Artery wall restructuring in response to increased flow. Surg. Forum 40:285–286.Google Scholar
  46. Matsumoto, T., and Hayashi, K. (1994). Mechanical and dimensional adaptation of rat aorta to hypertension. J. Biomech. Engr. 116:278–283.CrossRefGoogle Scholar
  47. Matsumoto, T., and Hayashi, K. (1996). Analysis of stress and strain distribution in hypertensive and normotensive rat aorta considering residual strains. J. Biomech. Engr. 118:62–73.CrossRefGoogle Scholar
  48. Matsumoto, T., Itagaki, H., and Hayashi, K. (1994). FEM analysis of stress and deformation in vicinities of arterial graft anastomosis. Journal of Applied Biomaterials 5:79–87.CrossRefGoogle Scholar
  49. Matsumoto, T., Tsuchida, M., and Sato, M. (1996). Change in intramural strain distribution in rat aorta due to smooth muscle contraction and relaxtion. Am. J. Phys. 271:H1711–H1716.Google Scholar
  50. Matsumoto, T., Okumura, E., Miura, Y., and Sato, M. (1999). Mechanical and dimensional adaptation on rabbit carotid artery cultured in vitro. Med. Biol. Eng. Comput. 37:252–256.CrossRefGoogle Scholar
  51. Nerem, B. (1993). Hemodynamics and the vascular endothelium. J. Biomech. Engr. 115:510–514.CrossRefGoogle Scholar
  52. Paasche, R. E., Kinley, C. E., Dolan, F. G., Gonaz, E. R., and Marble, A. E. (1973). Consideration of suture line stresses in the selection of synthetic grafts for implantation. J. Biomech. 6:253–259.CrossRefGoogle Scholar
  53. Patel, D. J., and Vaishnav, R. N. (1972). The rheology of large blood vessels. In Bergel, D. H., ed., In Cardiovascular Fluid Dynamics, volume 2, 1–64. New York: Academic.Google Scholar
  54. Rachev, A., and Hayashi, K. (1999). Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Engr. 27:459–468.CrossRefGoogle Scholar
  55. Rachev, A., and Kirilova, M. (2001). A Mathematical Model of Arterial Regeneration Over Bioresorbable Grafts. in preparation.Google Scholar
  56. Rachev, A., Ivanov, T., and Boev, K. (1980). A model for contraction of smooth muscle (translated from russian). Mech. Comp. Mat. 2:259–263.CrossRefGoogle Scholar
  57. Rachev, A., Stergiopulos, N., and Meister, J. (1996). Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. J. Biomech. 5:635–642.CrossRefGoogle Scholar
  58. Rachev, A., Stergiopulos, N., and Meister, J. (1998). A model for geometrical and mechanical adaptation of arteries to sustained hypertension. J. Biomech. Engr. 120:9–17.CrossRefGoogle Scholar
  59. Rachev, A., Manoach, E., and Moore, J. B. J. (2000). A model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J. Theoret. Biol. 206:429–443.CrossRefGoogle Scholar
  60. Rachev, A. (1997). Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 8:819–827.CrossRefGoogle Scholar
  61. Rachev, A. (2000). A model of arterial adaptation to alterations in blood flow. J. Elasticity 61(1/3):83–111.CrossRefMATHMathSciNetGoogle Scholar
  62. Rembold, C., and Murphy, R. (1990). Latch-bridge model in smooth muscle: [Ca2+] can quantitatively predict stress. Am. J. Physiol. 259:C251–C259.Google Scholar
  63. Rodbard, S. (1970). Negative feedback mechanisms in the architecture and function of the connective and cardiovascular tissue. Perspectives in Biology and Medicine 13:507–527.Google Scholar
  64. Rodriguez, E. K., Hoger, A., and McCulloch, A. D. (1994). Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–467.CrossRefGoogle Scholar
  65. Roux, W. (1885). Der züchtende Kampf der Teile (Theorie der funktionellen Anpassung). In Engelmann, W., ed., Gesammelte Abhandlungen über die Entwicklungsmechanik der Organismen, Volume 7, 137–422.Google Scholar
  66. Stein, A. A. (2000). Application of continuum mechanics methods to the modeling of growth of biological tisuues. In Beloussov, L. V., and Stein, A. A., eds., Mechanics of growth and morphologenesis, 148–173. Moscow: Moscow University press.Google Scholar
  67. Stergiopulos, N. (2000). Using hemodynamics to limit stent restenosis rates: the ares stent principle. In 12th Conference of the European Society of Biomechanics, 302.Google Scholar
  68. Stewart, S., and Lyman, D. (1988). Finite elasticity modeling the biaxial and uniaxial properties of compliant vascular grafts. J. Biomech. Engr. 110:344–348.CrossRefGoogle Scholar
  69. Taber, L. A., and Eggers, D. W. (1996). Theoretical study of stress-modulated growth in the aorta. J. Theoret. Biol. 180:343–357.CrossRefGoogle Scholar
  70. Taber, L. A., Ng, S., Quesnel, A. M., Whatman, J., and Carmen, C. J. (2001). Investigating Murray’s law in the chick embryo. J. Biomech. 34:121–124.CrossRefGoogle Scholar
  71. Taber, L. A. (1995). Biomechanical of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48:489–545.Google Scholar
  72. Taber, L. A. (1998a). Biomechanical growth laws for muscle tissue. J. Theoret. Biol. 193(2):201–213.CrossRefMathSciNetGoogle Scholar
  73. Taber, L. A. (1998b). A model for aortic growth based on fluid shear and fiber stresses. J. Biomech. 120:348–354.CrossRefGoogle Scholar
  74. Thoma, R. (1893). Untersuchungen über die Histogenese und Histomechanik des Gefäßsystems. Stuttgart: Enke.Google Scholar
  75. Vaishnav, R. N., and Vossoughi, J. (1983). Estimation of residual strains in aortic segments. In Hall, C. W., ed., Biomedical Engineering II: Recent Developments. New York: Pergamon Press. 330–333.Google Scholar
  76. Vaishnav, R. N., Vossough, J., Patel, D. J., Cothran, I. N., Coleman, B. R., and Ison-Franklin, E. L. (1990). Effect of hypertension on elasticity and geometry of aortic tissue from dogs. J. Biomech. Engr. 112:70–74.CrossRefGoogle Scholar
  77. Vorp, D., Raghavan, M., Borovetz, H., Greisler, H., and Webster, M. (1995). Modeling the transmural stress distribution during healing of bioresorbable vascular prostheses. Ann. Biomed. Engr. 23:178–188.CrossRefGoogle Scholar
  78. Waliszewski, M. W., Stergiopulos, N., and Meister, J. J. (1999). The use of an organ support system for the study of arterial wall remodeling in vitro. International Journal of Cardiovascular Medicine and Science 2:93–97.Google Scholar
  79. Zamir, M. (1979). Shear forces and blood vessels radii in the cardiovascular system. Journal of General Physiology 69:449–461.CrossRefGoogle Scholar
  80. Zarins, C. K., Zatina, M. A., Giddens, D., Ku, D. N., and Glagov, S. (1987). Shear stress regulation of artery lumen diameter in experimental atherogenesis. J. Vasc. Surg. 5:413–420.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Alexander Rachev
    • 1
  1. 1.Institute of MechanicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations