Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 441))

Abstract

It has long been accepted that mechanical factors play a critical role in the natural history of intracranial saccular aneurysms — their pathogenesis, enlargement, and rupture. Nevertheless, until very recently, biomechanical analysis has been surprisingly scant. In this chapter, we see how nonlinear elasticity, membrane theory, nonlinear dynamics, and nonlinear finite element analyses can be used to increase our understanding of the mechanics of saccular aneurysms. Much has been learned, but much remains to be accomplished, particularly in the area of the mechanics of biological growth and remodeling. Hence, it is also hoped that this chapter will encourage new investigators to study the mechanics of aneurysms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkas, N. (1990). Aneurysms as a biomechanical instability problem. In Mosora F., ed., Biomechanical Transport Processes. Plenum Press. 303–311.

    Google Scholar 

  • Austin, G. (1971). Biomathematical model of aneurysm of the Circle of Willis: The Duffing equation and some approximate solutions. Math. Biosci. 11:163–172.

    Article  MATH  Google Scholar 

  • Austin, G.M., Schievink, W. and Williams, R. (1989). Controlled pressure-volume factors in the enlargement of intracranial saccular aneurysms. Neurosurg. 24:722–730.

    Article  Google Scholar 

  • Beatty, M.F. (1987). Topics in finite elasticity: Hyperelasticity of rubber, elastomers, and biological tissues — with examples. Appl. Mech. Rev. 40:1699–1734.

    Article  Google Scholar 

  • Bruno, G., Todor, R., Lewis, I. and Chyatte, D. (1998). Vascular extracellular matrix remodeling in cerebral aneurysms. J. Neurosurg. 89:431–440.

    Article  Google Scholar 

  • Canham, P.B. and Ferguson, G.G. (1985). A mathematical model for the mechanics of saccular aneurysms. Neurosurg. 17:291–295.

    Article  Google Scholar 

  • Canham, P.B., Finlay, H.M., Dixon, J.G. and Ferguson, S. (1991). Layered collagen fabric of cerebral aneurysms quantitatively assessed by the universal stage and polarized light microscope. Anat. Record 231:579–592.

    Article  Google Scholar 

  • Canham, P.B., Whittaker, P., Barwick, S.E. and Schwab, M.E. (1991). Effect on circumferential order of adventitial collagen in human brain arteries. Can. J. Physiol. Pharmacol. 70:296–305.

    Article  Google Scholar 

  • Canham, P.B., Finlay, H.M. and Tong S.Y. (1996). Stereological analysis of the layered structure of human intracranial aneurysms. J. Microsc. 183:170–180.

    Article  Google Scholar 

  • Canham, P.B., Finlay, H.M., Kiernan, J.A. and Ferguson, G.G. (1999). Layered structure of saccular aneurysms assessed by collagen birefringence. Neurol Res. 21:618–626.

    Google Scholar 

  • Chyatte, D., Reilly, J. and Tilson, M.D. (1990). Morphometric analysis of reticular and elastin fibers in the cerebral arteries of patients with intracranial aneurysms. Neurosurg. 26:939–942.

    Article  Google Scholar 

  • Cronin, J. (1973). Biomathematical model of aneurysm of the Circle of Willis: A qualitative analysis of the differential equation of Austin. Math. Biosci. 16:209–225.

    Article  MATH  MathSciNet  Google Scholar 

  • de la Monte, S.M., Moore, G.W., Monk, M.A. and Hutchins, G.M. (1985). Risk factors for development and rupture of intracranial berry aneurysms. Am. J. Med. 78:957–964.

    Article  Google Scholar 

  • Ferguson, G.G. (1972). Physical factors in the initiation, growth, and rupture of human intracranial aneurysms. J. Neurosurg. 37:666–677.

    Article  Google Scholar 

  • Ferguson, G.G. (1972). Direct measurement of mean and pulsatile blood pressure at operation in human intracranial saccular aneurysms. J. Neurosurg. 36:560–563.

    Article  Google Scholar 

  • Foutrakis, G.N., Yonas, H. and Sclabassi, R.J. (1994). Finite element methods in the simulation and analysis of intracranial blood flow: Saccular aneurysm formation in curved and bifurcating arteries. Tech. Rep. 6, University of Pittsburgh, Computational Neuroscience.

    Google Scholar 

  • Fried, I. (1982). Finite element computation of large rubber membrane deformations. Int. J. Num. Meth. Engr. 18:653–660.

    Article  MATH  Google Scholar 

  • Gaetani, P., Tartara, F., Tancioni, F., Rodriguez y Baena, R., Casari, E., Alfano, M. and Grazioli, V. (1997). Deficiency of total collagen content and of deoxypyridinoline in intracranial aneurysm walls. FEBS Letters 404:303–306.

    Article  Google Scholar 

  • Gibbons, G.H. and Dzau, V.J. (1994). The emerging concept of vascular remodeling. Mech. of Disease 330:1431–1438.

    Google Scholar 

  • Green, A.E. and Zerna, W. (1954). Theoretical Elasticity. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Green, A.E. and Adkins, J.E. (1970). Large Elastic Deformations. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Hademenos, G.J., Massoud, T., Valentino, D.J., Duckwiler, G. and Vinuela, F. (1994). A nonlinear mathematical model for the development and rupture of intracranial saccular aneurysms. Neurol. Res. 16:376–384.

    Google Scholar 

  • Hegedus, K. (1984). Some observations on reticular fibers in the media of the major cerebral arteries. Surg. Neurol. 22:301–307.

    Article  Google Scholar 

  • Hsu, F.P.K., Schwab, C., Rigamonti, D. and Humphrey, J.D. (1994). Identification of response functions for nonlinear membranes via axisymmetric inflation tests: Implications for biomechanics. Int. J. Solids Structures 31:3375–3386.

    Article  MATH  Google Scholar 

  • Hsu, F.P.K., Liu, A.M.C., Downs, J., Rigamonti, D. and Humphrey, J.D. (1995). A triplane video-based experimental system for studying axisym-metrically inflated biomembranes. IEEE Trans. Biomed. Engr. 42:442–450.

    Article  Google Scholar 

  • Humphrey, J.D., Strumpf, R.K. and Yin, F.C.P. (1992). A constitutive theory for biomembranes: Application to epicardium. ASME J. Biomech. Engr. 114:461–466.

    Article  Google Scholar 

  • Humphrey, J.D. (1995). Arterial wall mechanics: Review and directions. Crit. Rev. Biomed. Engr. 23:1–162.

    Google Scholar 

  • Humphrey, J.D. and Kyriacou, S.K. (1996). The use of Laplace’s equation in aneurysm mechanics. Neurol. Res. 18:204–208.

    Google Scholar 

  • Humphrey, J.D. (1998). Computer methods in membrane biomechanics. Comp. Meth. Biomech. Biomed. Engr. 1:171–210.

    Article  Google Scholar 

  • Humphrey, J.D. (2002) Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer-Verlag.

    Book  Google Scholar 

  • Hung, E.J.N. and Botwin, M.R. (1975). Mechanics of rupture of cerebral saccular aneurysms. J. Biomech. 8:385–392.

    Article  Google Scholar 

  • Jain, K.K. (1963). Mechanism of rupture of intracranial saccular aneurysms. Surg. 347–350.

    Google Scholar 

  • Kosierkiewicz, T.M., Factor, S.M. and Dickson, D.W. (1994). Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms. J. Neuropath. Exp. Neurol. 53:399–406.

    Article  Google Scholar 

  • Kraus, H. (1967). Thin Elastic Shells. New York: Wiley.

    MATH  Google Scholar 

  • Kyriacou, S.K. and Humphrey, J.D. (1996). Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. J. Biomech. 29:1015–1022. Erratum (1997). 30:761.

    Article  Google Scholar 

  • Kyriacou, S.K., Schwab, C. and Humphrey, J.D. (1996). Finite element analysis of nonlinear orthotropic hyperelastic membranes. Comp. Mech. 18:269–278.

    Article  MATH  Google Scholar 

  • Kyriacou, S.K., Shah, A. and Humphrey, J.D. (1997). Inverse finite element characterization of nonlinear hyperelastic membranes. J. Appl. Mech. 64:257–262.

    Article  MATH  Google Scholar 

  • Langille, B.L. (1993). Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix. J. Cardiovasc. Pharmacol. 21:S11–S17.

    Article  Google Scholar 

  • Libai, A. and Simmonds, J.G. (1988). The Nonlinear Theory of Elastic Shells. New York: Academic Press.

    MATH  Google Scholar 

  • MacDonald, D.J., Finlay, H.M. and Canham, P.B. (2002). Directional wall strength in saccular brain aneurysms from polarized light microscopy. Ann. Biomed. Engr. (submitted)

    Google Scholar 

  • Milnor, W.R. (1989). Hemodynamics. Baltimore: Williams and Wilkens.

    Google Scholar 

  • Payne, A.R. (1974). Hysteresis in rubber vulcanizates. J. Polym. Sci. 48:169–195.

    Article  Google Scholar 

  • Pipkin, A.C. (1968). Integration of an equation in membrane theory. ZAMP 19:818–819.

    Article  MATH  Google Scholar 

  • Ryan, J.M. and Humphrey, J.D. (1999). Finite element based predictions of preferred material symmetries in saccular aneurysms. Ann. Biomed. Engr. 27:641–647.

    Article  Google Scholar 

  • Scott, S., Ferguson, G.G., Roach, M.R. (1972). Comparison of the elastic properties of human intracranial arteries and aneurysms. Can. J. Physiol. Pharmacol. 50:328–332.

    Article  Google Scholar 

  • Sekhar, L.N., Heros, R.C. (1981). Origin, growth and rupture of saccular aneurysms: A review. Neurosurg. 8:248–260.

    Article  Google Scholar 

  • Sekhar, L.N., Sclabassi, R.P., Sun, M., Blue, H.B. and Wasserman, J.F. (1988). Intra-aneurysmal pressure measurements in experimental saccular aneurysms in dogs. Stroke 19:353–356.

    Article  Google Scholar 

  • Seshaiyer, P. and Humphrey, J.D. (2001). On the potentially protective role of contact constraints in saccular aneurysms. J. Biomech. 34:607–612.

    Article  Google Scholar 

  • Seshaiyer, P., Shah, A.D., Kyriacou, S.K. and Humphrey, J.D. (2001). Multiaxial mechanical behavior of human saccular aneurysms. Comp. Meth. Biomech. Biomed. Engr. 4:281–290.

    Article  Google Scholar 

  • Shah, A.D., Harris, J.L., Kyriacou, S.K. and Humphrey, J.D. (1997). Further roles of geometry and properties in saccular aneurysm mechanics. Comp. Meth. Biomech. Biomed. Engr. 1:109–121.

    Article  Google Scholar 

  • Shah, A.D. and Humphrey, J.D. (1999). Finite strain elastodynamics of saccular aneurysms. J. Biomech. 32:593–599.

    Article  Google Scholar 

  • Simkins, T.E. and Stehbens, W.E. (1973). Vibrational behavior of arterial aneurysms. Lett. Appl. Engr. Sci. 1:85–100.

    Google Scholar 

  • Stehbens, W.E. (1990). Pathology and pathogenesis of intracranial berry aneurysms. Neurol. Res. 12:29–34.

    Google Scholar 

  • Steiger, H.J., Aaslid, R., Keller, S. and Reulen, H.J. (1986). Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessels 5:41–46.

    Article  Google Scholar 

  • Steiger, H.J. (1990). Pathophysiology of development and rupture of cerebral aneurysms. Acta Neurochir. Suppl. 48:1–57.

    Google Scholar 

  • Steigmann, D.J. (1990). Tension field theory. Proc. R. Soc. Lond. A 429:141–173.

    Article  MATH  MathSciNet  Google Scholar 

  • Toth, M., Nadasy, G.L., Nyary, I., Kerenyi, T., Orosz, M., Molnarka, G. and Monos, E. (1998). Sterically inhomogeneous viscoelastic behavior of human saccular cerebral aneuryms. J. Vasc. Res. 35:345–355.

    Article  Google Scholar 

  • White, J.C. and Sayre, G.P. (1961). Experimental destruction of the media for the production of intracranial arterial aneurysms. J. Neurosurg. 18:741–745.

    Article  Google Scholar 

  • Whittaker, P., Schwab, M.E. and Canham, P.B. (1988). The molecular organization of collagen in saccular aneurysms assessed by polarized light microscopy. Conn. Tiss. Res. 17:43–54.

    Article  Google Scholar 

  • Wiebers, D.O., Whisnant, J.P., Sundt, T.M. and O’Fallon, W.M. (1987). The significance of unruptured intracranial aneurysms. J. Neurosurg. 66:23–29.

    Article  Google Scholar 

  • Wiebers, D.O. et al. (1998) Unruptured intracranial aneurysms—risk of rupture and risks of surgical intervention. International study of unruptured intracranial aneurysms investigators. New Engl. J. Med. 339:1725–1733.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Humphrey, J.D. (2003). Intracranial Saccular Aneurysms. In: Holzapfel, G.A., Ogden, R.W. (eds) Biomechanics of Soft Tissue in Cardiovascular Systems. International Centre for Mechanical Sciences, vol 441. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2736-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2736-0_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00455-5

  • Online ISBN: 978-3-7091-2736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics