Skip to main content

Structural and Numerical Models for the (Visco)elastic Response of Arterial Walls with Residual Stresses

  • Chapter
Biomechanics of Soft Tissue in Cardiovascular Systems

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 441))

Abstract

In this chapter we focus attention on the description of structural and numerical models for the elastic and viscoelastic response of arterial walls with residual stresses. We start by reviewing briefly the arterial histology and describing the mechanical characteristics of arterial components. We also present a fully automatic technique for identifying the orientations of cellular nuclei.

Particular attention is concentrated on multi-layer models for predicting reliably the passive elastic and viscoelastic three-dimensional stress and deformation states of arterial walls under various loading conditions. All the models proposed are well suited for FE implementation. Each arterial layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous constituent of the material and symmetrically disposed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer. A specific form of the law, which requires only three material parameters for each layer, is used to study the response of an artery under combined axial extension, inflation and torsion. The characteristic and very important residual stress in an artery in vitro is accounted for by assuming that the unstressed configuration of the material corresponds to an open sector of a tube. The viscoelastic model admits hysteresis loops that are known to be relatively insensitive to strain rate, an essential mechanical feature of muscular arteries. The concept of internal variables is introduced in order to replicate the characteristic dissipative mechanism. We summarize the equations that provide the general continuum description of the deformation and the hyperelastic stress response of arterial walls, which are assumed to behave isochorically. One particular simple mixed FE method is discussed in detail (leading to the Q1/P0-element). This approach circumvents numerical difficulties that arise from the overstiffening of the system associated with the analysis of isochoric deformations. Stiffness matrices and some insights into solution methods for nonlinear dynamic problems are provided. Three numerical examples are included to show the performance of the structural arterial models and to document FE results that are in good qualitative agreement with experimental data. The first example is concerned with a FE analysis of the mechanical behavior of an artery during clamping. The remaining two examples are concerned with investigation of the characteristic viscoelastic behavior of a healthy young artery under static and dynamic boundary loadings.

In the last section a layer-specific FE-model of balloon angioplasty is described. The model makes use of an in vitro MRI of a human stenotic post-mortem artery and mechanical tests of the corresponding vascular tissues under supra-physiological loadings. The three-dimensional FE realization considers the balloon-artery interaction and accounts for vessel-specific axial in situ pre-stretches. The proposed approach provides a tool that has the potential to improve procedural protocols and the design of interventional instruments on a lesion-specific basis, and to determine post-angioplasty mechanical environments, which may be correlated with restenosis responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abè, H., Hayashi, K., and Sato, M., eds. (1996). Data Book on Mechanical Properties of Living Cells, Tissues, and Organs. New York: Springer-Verlag.

    Google Scholar 

  • American Heart Association. (2000). 2001 Heart and Stroke Statistical Update. Dallas, Texas: American Heart Association.

    Google Scholar 

  • Bathe, K.-J. (1996). Finite Element Procedures. Englewood Cliffs, New Jersey: Prentice-Hall.

    Google Scholar 

  • Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993). Nonlinear Programming, Theory and Algorithms. Chichester: John Wiley & Sons, 2nd edition.

    MATH  Google Scholar 

  • Belytschko, T., Liu, W. K., and Moran, B. (2000). Nonlinear Finite Elements for Continua and Structures. Chichester: John Wiley & Sons.

    MATH  Google Scholar 

  • Bergel, D. H. (1961a). The dynamic elastic properties of the arterial wall. J. Physiol. 156:458–469.

    Google Scholar 

  • Bergel, D. H. (1961b). The static elastic properties of the arterial wall. J. Physiol. 156:445–457.

    Google Scholar 

  • Bonet, J., and Wood, R. D. (1997). Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Brezzi, F., and Fortin, M. (1991). Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Carmines, D. V., McElhaney, J. H., and Stack, R. (1991). A piece-wise non-linear elastic stress expression of human and pig coronary arteries tested in vitro. J. Biomech. 24:899–906.

    Article  Google Scholar 

  • Castaneda-Zuniga, W. R. (1985). Pathophysiology of transluminal angioplasty. In Meyer, J., Erberl, R., and Rupprecht, H. J., eds., Improvement of Myocardial Perfusion. Boston: Martinus Nijhoff Publisher. 138–141.

    Chapter  Google Scholar 

  • Chen, Y. L., and Fung, Y. C. (1973). Stress-history relations of rabbit mesentery in simple elongation. In ASME 1973 Biomechanics Symposium, AMD-Vol. 2, 9–10. New York: American Society of Mechanical Engineers.

    Google Scholar 

  • Chung, J., and Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized a-method. J. Appl. Mech. 60:371–375.

    Article  MATH  MathSciNet  Google Scholar 

  • Chuong, C. J., and Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. ASME J. Biomech. Eng. 105:268–274.

    Article  Google Scholar 

  • Coleman, B. D., and Gurtin, M. E. (1967). Thermodynamics with internal state variables. J. Chem. Phys. 47:597–613.

    Article  Google Scholar 

  • Coleman, B. D., and Noll, W. (1963). The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal 13:167–178.

    Article  MATH  MathSciNet  Google Scholar 

  • Cox, R. H. (1976). Mechanics of canine iliac artery smooth muscle in vitro. Am. J. Physiol. 230:462–470.

    Google Scholar 

  • Crisfield, M. A. (1991). Non-linear Finite Element Analysis of Solids and Structures, Essentials, Volume 1. Chichester: John Wiley & Sons.

    Google Scholar 

  • Crisfield, M. A. (1997). Non-linear Finite Element Analysis of Solids and Structures, Advanced Topics, Volume 2. Chichester: John Wiley & Sons.

    Google Scholar 

  • Deng, S. X., Tomioka, J., Debes, J. C., and Fung, Y C. (1994). New experiments on shear modulus of elasticity of arteries. Am. J. Physiol. 266:H1–H10.

    Google Scholar 

  • Dennis, J. E., and Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, New Jersey: Prentice-Hall.

    MATH  Google Scholar 

  • Eberlein, R., Holzapfel, G. A., and Schulze-Bauer, C. A. J. (2001). An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput. Meth. Biomech. Biomed. Engr. 4:209–230.

    Article  Google Scholar 

  • Fayad, Z. A., Fuster, V., Fallon, J. T., Jayasundera, T., Worthley, S. G., Helft, G., Aguinaldo, J. G., Badimon, J. J., and Sharma, S. K. (2000a). Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circ. 102:506–510.

    Article  Google Scholar 

  • Fayad, Z. A., Nahar, T., Fallon, J. T., Goldman, M., Aguinaldo, J. G., Badimon, J. J., Shinnar, M., Chesebro, J. H., and Fuster, V. (2000b). In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: A comparison with transesophageal echocardiography. Circ. 101:2503–2509.

    Article  Google Scholar 

  • Fischman, D. L., Leon, M. B., Bairn, D. S., Schatz, R. A., Savage, M. R., Penn, I., Detre, K., Veltri, L., Ricci, D., Nobuyoshi, M., Cleman, M. W., Heuser, R. R., Almond, D., Teirstein, P. S., Fish, R. D., Colombo, A., Brinker, J., Moses, J., Shaknovich, A., Hirshfeld, J., Bailey, S., Ellis, S., Rake, R., and Goldberg, S. (1994). A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent restenosis study investigators. New Engl. J. Med. 331:496–501.

    Article  Google Scholar 

  • Flory, P. J. (1961). Thermodynamic relations for highly elastic materials. Trans. Faraday Soc. 57:829–838.

    Article  MathSciNet  Google Scholar 

  • Fung, Y. C., and Sobin, S. S. (1981). The retained elasticity of elastin under fixation agents. J. Biomech. Engr. 103:121–122.

    Article  Google Scholar 

  • Fung, Y. C., Fronek, K., and Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237:H620–H631.

    Google Scholar 

  • Fung, Y. C. (1971). Stress-strain-history relations of soft tissues in simple elongation. In Fung, Y. C., Perrone, N., and Anliker, M., eds., Biomechanics: Its Foundations and Objectives. New Jersey: Prentice-Hall, Inc., Englewood Cliffs. 181–208. Chapter 7.

    Google Scholar 

  • Fung, Y. C. (1993). Biomechanics. Mechanical Properties of Living Tissues. New York: Springer-Verlag, 2nd edition.

    Google Scholar 

  • Gasser, T. C., and Holzapfel, G. A. (2001). A rate-independent elastoplastic constitutive model for fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. in press.

    Google Scholar 

  • Gasser, T. C., Schulze-Bauer, C. A. J., and Holzapfel, G. A. (2002). A three-dimensional finite element model for arterial clamping. ASME J. Biomech. Eng. 124:355–363.

    Article  Google Scholar 

  • Goudreau, G. L., and Taylor, R. L. (1972). Evaluation of numerical integration methods in elastodynamics. Comput. Meth. Appl. Mech. Engr. 2:69–97.

    Article  MathSciNet  Google Scholar 

  • Gow, B. S., and Hadfield, C.D. (1979). The elasticity of canine and human coronary arteries with reference to postmortem changes. Circ. Res. 45:588–594.

    Article  Google Scholar 

  • Harvey, J. G., and Gough, M. H. (1981). A comparison of the traumatic effects of vascular clamps. Br. J. Surg. 68:267–272.

    Article  Google Scholar 

  • Hayashi, K., Kamiya, A., and Ono, K., eds. (1996). Biomechanics — Functional Adaptation and Remodeling. Tokyo: Springer-Verlag.

    Google Scholar 

  • Hayashi, K. (1993). Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J. Biomech. Engr. 115:481–488.

    Article  Google Scholar 

  • Herrmann, L. R., and Peterson, F. E. (1968). A numerical procedure for viscoelastic stress analysis. in Proceedings 7th Meeting of ICRPG Mechanical Behavior Working Group, Orlando.

    Google Scholar 

  • Hibbitt, Karlsson, and Sorensen., eds. (1998). ABAQUS/Standard Users’s Manual, Version 5.8. Hibbitt, Karlsson and Sorensen, Inc.

    Google Scholar 

  • Hilber, H. M., Hughes, T. J. R., and Taylor, R. L. (1977). Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng. Struc. 5:282–292.

    Google Scholar 

  • Hinton, E., Rock, T., and Zienkiewicz, O. C. (1976). A note on mass lumping and related processes in the finite element method. Earthquake Eng. Struc. 4:245–249.

    Article  Google Scholar 

  • Holzapfel, G. A., and Gasser, T. C. (2001). A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Meth. Appl. Mech. Engr. 190:4379–4403.

    Article  Google Scholar 

  • Holzapfel, G. A., and Weizsäcker, H. W. (1998). Biomechanical behavior of the arterial wall and its numerical characterization. Comp. Biol. Med. 28:377–392.

    Article  Google Scholar 

  • Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000a). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Holzapfel, G. A., Schulze-Bauer, C. A. J., and Stadler, M. (2000b). Mechanics of angioplasty: Wall, balloon and stent. In Casey, J., and Bao, G., eds., Mechanics in Biology. New York: The American Society of Mechanical Engineers (ASME). AMD-Vol. 242/BED-Vol. 46, pp. 141–156.

    Google Scholar 

  • Holzapfel, G. A., Gasser, T. C., and Stadler, M. (2002a). A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Eur. J. Mech. A/Solids 21:441–463.

    Article  MATH  Google Scholar 

  • Holzapfel, G. A., Stadler, M., and Schulze-Bauer, C. A. J. (2002b). A layer-specific 3D model for the finite element simulation of balloon angioplasty using MR imaging and mechanical testing. Ann. Biomed. Engr. 30:753–767.

    Article  Google Scholar 

  • Holzapfel, G. A. (1996). On large strain viscoelasticity: Continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Meth. Engr. 39:3903–3926.

    Article  MATH  Google Scholar 

  • Holzapfel, G. A. (2000). Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: John Wiley & Sons.

    MATH  Google Scholar 

  • Holzapfel, G. A. (2001). Biomechanics of soft tissue. In Lemaitre, J., ed., The Handbook of Materials Behavior Models. Volume III, Multiphysics Behaviors, Chapter 10, Composite Media, Biomaterials, 1049–1063. Boston: Academic Press.

    Google Scholar 

  • Hoschek, J., and Lasser, D., eds. (1993). Fundamentals of Computer Aided Geometric Design. Wellesly: A. K. Peters Ltd.

    MATH  Google Scholar 

  • Hughes, T. J. R., and Pister, K. S. (1978). Consistent linearization in mechanics of solids and structures. Comput. & Structures 8:391–397.

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes, T. J. R., Liu, W. K., and Brooks, A. (1979). Finite element analysis of incompressible viscous flows by the penalty function formulation. J. Comput. Phys. 30:1–60.

    Article  MATH  MathSciNet  Google Scholar 

  • Hughes, T. J. R. (2000). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York: Dover.

    Google Scholar 

  • Humphrey, J. D. (1995). Mechanics of the arterial wall: Review and directions. Critical Reviews in Biomed. Engr. 23:1–162.

    Google Scholar 

  • Humphrey, J. D. (2002). Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. New York: Springer-Verlag.

    Book  Google Scholar 

  • Jackiewicz, T. A., McGeachie, J. K., and Tennant, M. (1996). Structural recovery of small arteries following clamp injury: a light and electron microscopic investigation in the rat. Microsurgery 17:674–680.

    Article  Google Scholar 

  • Langewouters, G. J., Wesseling, K. H., and Goedhard, W. J. A. (1984). The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J. Biomech. 17:425–435.

    Article  Google Scholar 

  • Learoyd, B. M., and Taylor, M. G. (1966). Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18:278–292.

    Article  Google Scholar 

  • Lubliner, J. (1990). Plasticity Theory. New York: Macmillan Publishing Company.

    MATH  Google Scholar 

  • Luenberger, D. G. (1984). Linear and Nonlinear Programming. Reading, Massachusetts: Addison-Wesley Publishing Company.

    MATH  Google Scholar 

  • Luk-Pat, G. T., Gold, G. E., Olcott, E. W., Hu, B. S., and Nishimura, D. G. (1999). High-resolution three-dimensional in vivo imaging of atherosclerotic plaque. Magn. Reson. Med. 42:762–771.

    Article  Google Scholar 

  • Macaya, C., Serruys, P. W., Ruygrok, P., Suryapranata, H., Mast, G., Klugmann, S., Urban, P., den Heijer, P., Koch, K., Simon, R., Morice, M. C., Crean, P., Bonnier, H., Wijns, W., Danchin, N., Bourdonnec, C., and Morel, M. A. (1996). Continued benefit of coronary stenting versus balloon angioplasty: One-year clinical follow-up of Benestent trial. Benestent Study Group. J. Am. Coll Cardiol 27:255–61.

    Article  Google Scholar 

  • Maltzahn, W.-W. V., and Warriyar, R. G. (1984). Experimental measurments of elastic properties of media and adventitia of bovine carotid arteries. J. Biomech. 17:839–847.

    Article  Google Scholar 

  • Margovsky, A. I., Lord, R. S. A., Meek, A. C., and Bobryshev, Y. V. (1997). Artery wall damage and platelet uptake from so-called atraumatic arterial clamps: An experimental study. Cardiol Surg. 5:42–47.

    Article  Google Scholar 

  • Mario, C. D., Gil, R., Camenzind, E., Ozaki, Y., von Birgelen, C., Umans, V., de Jaegere, P., de Feyter, P. J., Roelandt, J. R. T. C., and Serruys, P. W. (1995). Quantitative assessment with intracoronary ultrasound of the mechanism of restenosis after percutaneous transluminal coronary angioplasty and directional coronary atherectomy. Am. J. Cardiol. 75:772–777.

    Article  Google Scholar 

  • Martin, A. J., Gotlieb, A. I., and R.M., R. M. H. (1995). High-resolution MR imaging of human arteries. J. Magn. Reson. Imaging 5:93–100.

    Article  Google Scholar 

  • Matthies, H., and Strang, G. (1979). The solution of nonlinear finite element equations. Int. J. Numer. Meth. Engr. 14:1613–1626.

    Article  MATH  MathSciNet  Google Scholar 

  • Nagtegaal, J. C., Parks, D. M., and Rice, J. R. (1974). On numerically accurate finite element solutions in the fully plastic range. Comput. Meth. Appl. Mech. Engr. 4:153–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Newmark, N. M. (1959). A method of computation for structural dynamics. J. Eng. Mech. Division, Proc. Am. Soc. of Civil Eng. 85:67–94.

    Google Scholar 

  • Nimni, M. E., and Harkness, R. D. (1988). Molecular structure and functions of collagen. In Nimni, M. E., ed., Collagen. Boca Raton, FL: CRC Press. 3–35.

    Google Scholar 

  • Nimni, M. E., ed. (1988). Collagen. 4 Vols: 1. Biochemistry; 2. Biochemistry and Biomechanics; 3. Biotechnology; 4. Molecular Biology. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Oden, J. T., and Carey, G. F. (1984). Finite Elements: Mathematical Aspects, Volume IV Englewood Cliffs, N.J.: Prentice-Hall.

    Google Scholar 

  • Ogden, R. W., and Schulze-Bauer, C. A. J. (2000). Phenomenological and structural aspects of the mechanical response of arteries. In Casey, J., and Bao, G., eds., Mechanics in Biology. New York: The American Society of Mechanical Engineers (ASME). AMD-Vol. 242/BED-Vol. 46, pp. 125–140.

    Google Scholar 

  • Ogden, R. W. (1978). Nearly isochoric elastic deformations: Application to rubberlike solids. J. Mech. Phys. Solids 26:37–57.

    Article  MATH  MathSciNet  Google Scholar 

  • Ogden, R. W. (1997). Non-linear Elastic Deformations. New York: Dover.

    Google Scholar 

  • Patel, D. J., and Fry, D. L. (1969). The elastic symmetry of arterial segments in dogs. Circ. Res. 24:1–8.

    Article  Google Scholar 

  • Piegel, L. A., and Tiller, W. (1997). The NURBS Book. New York: Springer-Verlag, 2nd edition.

    Book  Google Scholar 

  • Rachev, A., Manoach, E., Berry, J., and Moore Jr., J. E. (2000). A model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J. Theoret. Biol. 206:429–443.

    Article  Google Scholar 

  • Rachev, A. (1997). Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30:819–827.

    Article  Google Scholar 

  • Rhodin, J. A. G. (1980). Architecture of the vessel wall. In Bohr, D. F., Somlyo, A. D., and Sparks, H. V., eds., Handbook of Physiology, The Cardiovascular System, Volume 2. Bethesda, Maryland: American Physiologial Society. 1–31.

    Google Scholar 

  • Richardson, P. D., Davies, M. J., and Born, G. V. R. (1989). Influence of plaque configuration and stress distribution on Assuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944.

    Article  Google Scholar 

  • Riks, E. (1984). Some computational aspects of stability analysis of nonlinear structures. Comput. Meth. Appl. Mech. Engr. 47:219–260.

    Article  MATH  Google Scholar 

  • Roach, M. R., and Burton, A. C. (1957). The reason for the shape of the distensibility curve of arteries. Canad. J. Biochem. Physiol 35:681–690.

    Article  Google Scholar 

  • Rodriguez, E. K., Hoger, A., and McCulloch, A. D. (1994). Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–467.

    Article  Google Scholar 

  • Rogers, W. J., Prichard, J. W., Hu, Y. L., Olson, P. R., Benckart, D. H., Kramer, C. M., Vido, D. A., and Reichek, N. (2000). Characterization of signal properties in atherosclerotic plaque components by intravascular MRI. Arterioscl. Thromb. and Vasc. Biol. 20:1824–1830.

    Article  Google Scholar 

  • Roy, C. S. (1880–82). The elastic properties of the arterial wall. J. Physiol 3:125–159.

    Google Scholar 

  • Schultze-Jena, B. S. (1939). Ãœber die schraubenförmige Struktur der Arterienwand. Gegenbauers Morphol. Jahrbuch 83:230–246.

    Google Scholar 

  • Schulze-Bauer, C. A. J., Mörth, C., and Holzapfel, G. A. (2001). Passive biaxial mechanical response of aged human iliac arteries. ASME J. Biomech. Eng. in press.

    Google Scholar 

  • Schulze-Bauer, C. A. J., Regitnig, P., and Holzapfel, G. (2002). Mechanics of the human femoral adventitia including high-pressure response. Am. J. Physiol., Heart Circ. Physiol. 282:H2427–2440.

    Google Scholar 

  • Schweizerhof, K. H., and Ramm, E. (1984). Displacement dependent pressure loads in nonlinear finite element analysis. Comput. & Structures 18:1099–1114.

    Article  MATH  Google Scholar 

  • Shinnar, M., Fallon, J. T., Wehrli, S., Levin, M., Dalmacy, D., Fayad, Z. A., Badimon, J. J., Harrington, M., Harrington, E., and Fuster, V. (1999). The diagnostic accuracy of ex vivo mri for human atherosclerotic plaque characterization. Arterioscl. Thromb. and Vase. Biol. 19:2756–2761.

    Article  Google Scholar 

  • Silver, F. H., Christiansen, D. L., and Buntin, C. M. (1989). Mechanical properties of the aorta: A review. Critical Reviews in Biomed. Engr. 17:323–358.

    Google Scholar 

  • Simo, J. C., and Hughes, T. J. R. (1998). Computational Inelasticity. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Simo, J. C., and Taylor, R. L. (1991). Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Meth. Appl. Mech. Engr. 85:273–310.

    Article  MATH  MathSciNet  Google Scholar 

  • Simo, J. C., Taylor, R. L., and Pister, K. S. (1985). Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Meth. Appl. Mech. Engr. 51:177–208.

    Article  MATH  MathSciNet  Google Scholar 

  • Skalak, R., Zargaryan, S., Jain, R. K., Netti, P. A., and Hoger, A. (1996). Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34:889–914.

    MATH  Google Scholar 

  • Slayback, J. B., Bowen, W. W., and Hinshaw, D. B. (1976). Intimai injury from arterial clamps. Am. J. Surg. 132:183–188.

    Article  Google Scholar 

  • Spencer, A. J. M. (1984). Constitutive theory for strongly anisotropic solids. In Spencer, A. J. M., ed., Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Wien: Springer-Verlag. 1–32. CISM Courses and Lectures No. 282, International Centre for Mechanical Sciences.

    Google Scholar 

  • Stary, H. C., Blankenhorn, D. H., Chandler, A. B., Glagov, S., Jr. Insull, W., Richardson, M., Rosenfeld, M. E., Schaffer, S. A., Schwartz, C. J., Wagner, W. D., and Wissler, R. W. (1992). A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circ. 85:391–405.

    Article  Google Scholar 

  • Staubesand, J. (1959). Anatomie der Blutgefäße. I. Funktionelle Morphologie der Arterien, Venen und arterio-venösen Anastomosen. In Ratschow, M., ed., Angiology. Stuttgart: Thieme. Chapter 2, 23–82.

    Google Scholar 

  • Taber, L. (1995). Biomechanics of growth, remodelling, and morphognesis. Appl. Mech. Rev. 48:487–543.

    Article  Google Scholar 

  • Taber, L. A. (1998). A model for aortic growth based on fluid shear and fiber stress. J. Biomech. Engr. 120:348–354.

    Article  Google Scholar 

  • Tanaka, T. T., and Fung, Y. C. (1974). Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7:357–370.

    Article  Google Scholar 

  • Taylor, R. L., Pister, K. S., and Goudreau, G. L. (1970). Thermomechanical analysis of viscoelastic solids. Int. J. Numer. Meth. Engr. 2:45–59.

    Article  MATH  Google Scholar 

  • Taylor, R. L. (2000). FEAP — A Finite Element Analysis Program — Version 7.3. University of California at Berkeley.

    Google Scholar 

  • The, S. H. K., Gussenhoven, E. J., Zhong, Y., Li, W., van Egmond, F., and Pieterman, H. (1992). Effect of balloon angioplasty on femoral artery evaluated with intravascular ultrasound imaging. Circ. 86:483–493.

    Article  Google Scholar 

  • Toussaint, J. F., Southern, J. F., Fuster, V., and Kantor, H. L. (1995). T2 contrast for nmr characterization of human atherosclerosis. Arterioscl. Thromb. and Vasc. Biol. 15:1533–1542.

    Google Scholar 

  • Toussaint, J. F., LaMuraglia, G. M., Southern, J. F., Fuster, V., and Kantor, H. L. (1996). Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circ. 94:932–938.

    Google Scholar 

  • Vaishnav, R. N., and Vossoughi, J. (1983). Estimation of residual strains in aortic segments. In Hall, C. W., ed., Biomedical Engineering II: Recent Developments. New York: Pergamon Press. 330–333.

    Google Scholar 

  • Valanis, K. C. (1972). Irreversible Thermodynamics of Continuous Media, Internal Variable Theory. Wien: Springer-Verlag.

    MATH  Google Scholar 

  • Washizu, K. (1982). Variational Methods in Elasticity and Plasticity. Oxford: Pergamon Press. 3rd edition.

    MATH  Google Scholar 

  • Weizsäcker, H. W., and Pinto, J. G. (1988). Isotropy and anisotropy of the arterial wall. J. Biomech. 21:477–487.

    Article  Google Scholar 

  • Wolinsky, H., and Glagov, S. (1967). A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20:90–111.

    Google Scholar 

  • Woo, S. L. Y., Simon, B. R., Kuei, S. C., and Akeson, W. H. (1979). Quasi-linear viscoelastic properties of normal articular cartilage. J. Biomech. Engr. 102:85–90.

    Article  Google Scholar 

  • Wood, W. L., Bossak, M., and Zienkiewicz, O. (1981). An alpha modification of Newmark’s method. Int. J. Numer. Meth. Engr. 15:1562–1566.

    Article  MathSciNet  Google Scholar 

  • Wood, W. L. (1990). Practical Time-stepping Schemes. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Wriggers, P. (2001). Nichtlineare Finite-Element-Methoden. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Xie, J., Zhou, J., and Fung, Y. C. (1995). Bending of blood vessel wall: Stress-strain laws of the intima-media and adventitia layers. J. Biomech. Engr. 117:136–145.

    Article  Google Scholar 

  • Yu, Q., Zhou, J., and Fung, Y. C. (1993). Neutral axis location in bending and Young’s modulus of different layers of arterial wall. Am. J. Physiol. 265:H52–H60.

    Google Scholar 

  • Yuan, C., Murakami, J. W., Hayes, C. E., Tsuruda, J. S., Hatsukami, T. S., Wildy, K. S., Ferguson, M. S., and Strandness, D. E. (1995). Phased-array magnetic resonance imaging of the carotid artery bifurcation: Preliminary results in healthy volunteers and a patient with atherosclerotic disease. J. Magn. Reson. Imaging 5:561–565.

    Article  Google Scholar 

  • Zienkiewicz, O. C., and Taylor, R. L. (2000). The Finite Element Method. Solid Mechanics, Volume 2. Oxford: Butterworth Heinemann, 5th edition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Holzapfel, G.A. (2003). Structural and Numerical Models for the (Visco)elastic Response of Arterial Walls with Residual Stresses. In: Holzapfel, G.A., Ogden, R.W. (eds) Biomechanics of Soft Tissue in Cardiovascular Systems. International Centre for Mechanical Sciences, vol 441. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2736-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2736-0_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00455-5

  • Online ISBN: 978-3-7091-2736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics