Structural and Numerical Models for the (Visco)elastic Response of Arterial Walls with Residual Stresses

  • Gerhard A. Holzapfel
Part of the International Centre for Mechanical Sciences book series (CISM, volume 441)


In this chapter we focus attention on the description of structural and numerical models for the elastic and viscoelastic response of arterial walls with residual stresses. We start by reviewing briefly the arterial histology and describing the mechanical characteristics of arterial components. We also present a fully automatic technique for identifying the orientations of cellular nuclei.

Particular attention is concentrated on multi-layer models for predicting reliably the passive elastic and viscoelastic three-dimensional stress and deformation states of arterial walls under various loading conditions. All the models proposed are well suited for FE implementation. Each arterial layer is treated as a fiber-reinforced material with the fibers corresponding to the collagenous constituent of the material and symmetrically disposed with respect to the cylinder axis. The resulting constitutive law is orthotropic in each layer. A specific form of the law, which requires only three material parameters for each layer, is used to study the response of an artery under combined axial extension, inflation and torsion. The characteristic and very important residual stress in an artery in vitro is accounted for by assuming that the unstressed configuration of the material corresponds to an open sector of a tube. The viscoelastic model admits hysteresis loops that are known to be relatively insensitive to strain rate, an essential mechanical feature of muscular arteries. The concept of internal variables is introduced in order to replicate the characteristic dissipative mechanism. We summarize the equations that provide the general continuum description of the deformation and the hyperelastic stress response of arterial walls, which are assumed to behave isochorically. One particular simple mixed FE method is discussed in detail (leading to the Q1/P0-element). This approach circumvents numerical difficulties that arise from the overstiffening of the system associated with the analysis of isochoric deformations. Stiffness matrices and some insights into solution methods for nonlinear dynamic problems are provided. Three numerical examples are included to show the performance of the structural arterial models and to document FE results that are in good qualitative agreement with experimental data. The first example is concerned with a FE analysis of the mechanical behavior of an artery during clamping. The remaining two examples are concerned with investigation of the characteristic viscoelastic behavior of a healthy young artery under static and dynamic boundary loadings.

In the last section a layer-specific FE-model of balloon angioplasty is described. The model makes use of an in vitro MRI of a human stenotic post-mortem artery and mechanical tests of the corresponding vascular tissues under supra-physiological loadings. The three-dimensional FE realization considers the balloon-artery interaction and accounts for vessel-specific axial in situ pre-stretches. The proposed approach provides a tool that has the potential to improve procedural protocols and the design of interventional instruments on a lesion-specific basis, and to determine post-angioplasty mechanical environments, which may be correlated with restenosis responses.


Arterial Wall Balloon Angioplasty Elastic Response Arterial Segment Arterial Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abè, H., Hayashi, K., and Sato, M., eds. (1996). Data Book on Mechanical Properties of Living Cells, Tissues, and Organs. New York: Springer-Verlag.Google Scholar
  2. American Heart Association. (2000). 2001 Heart and Stroke Statistical Update. Dallas, Texas: American Heart Association.Google Scholar
  3. Bathe, K.-J. (1996). Finite Element Procedures. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
  4. Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993). Nonlinear Programming, Theory and Algorithms. Chichester: John Wiley & Sons, 2nd edition.MATHGoogle Scholar
  5. Belytschko, T., Liu, W. K., and Moran, B. (2000). Nonlinear Finite Elements for Continua and Structures. Chichester: John Wiley & Sons.MATHGoogle Scholar
  6. Bergel, D. H. (1961a). The dynamic elastic properties of the arterial wall. J. Physiol. 156:458–469.Google Scholar
  7. Bergel, D. H. (1961b). The static elastic properties of the arterial wall. J. Physiol. 156:445–457.Google Scholar
  8. Bonet, J., and Wood, R. D. (1997). Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge: Cambridge University Press.MATHGoogle Scholar
  9. Brezzi, F., and Fortin, M. (1991). Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag.MATHCrossRefGoogle Scholar
  10. Carmines, D. V., McElhaney, J. H., and Stack, R. (1991). A piece-wise non-linear elastic stress expression of human and pig coronary arteries tested in vitro. J. Biomech. 24:899–906.CrossRefGoogle Scholar
  11. Castaneda-Zuniga, W. R. (1985). Pathophysiology of transluminal angioplasty. In Meyer, J., Erberl, R., and Rupprecht, H. J., eds., Improvement of Myocardial Perfusion. Boston: Martinus Nijhoff Publisher. 138–141.CrossRefGoogle Scholar
  12. Chen, Y. L., and Fung, Y. C. (1973). Stress-history relations of rabbit mesentery in simple elongation. In ASME 1973 Biomechanics Symposium, AMD-Vol. 2, 9–10. New York: American Society of Mechanical Engineers.Google Scholar
  13. Chung, J., and Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized a-method. J. Appl. Mech. 60:371–375.MATHMathSciNetCrossRefGoogle Scholar
  14. Chuong, C. J., and Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. ASME J. Biomech. Eng. 105:268–274.CrossRefGoogle Scholar
  15. Coleman, B. D., and Gurtin, M. E. (1967). Thermodynamics with internal state variables. J. Chem. Phys. 47:597–613.CrossRefGoogle Scholar
  16. Coleman, B. D., and Noll, W. (1963). The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal 13:167–178.MATHMathSciNetCrossRefGoogle Scholar
  17. Cox, R. H. (1976). Mechanics of canine iliac artery smooth muscle in vitro. Am. J. Physiol. 230:462–470.Google Scholar
  18. Crisfield, M. A. (1991). Non-linear Finite Element Analysis of Solids and Structures, Essentials, Volume 1. Chichester: John Wiley & Sons.Google Scholar
  19. Crisfield, M. A. (1997). Non-linear Finite Element Analysis of Solids and Structures, Advanced Topics, Volume 2. Chichester: John Wiley & Sons.Google Scholar
  20. Deng, S. X., Tomioka, J., Debes, J. C., and Fung, Y C. (1994). New experiments on shear modulus of elasticity of arteries. Am. J. Physiol. 266:H1–H10.Google Scholar
  21. Dennis, J. E., and Schnabel, R. B. (1983). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs, New Jersey: Prentice-Hall.MATHGoogle Scholar
  22. Eberlein, R., Holzapfel, G. A., and Schulze-Bauer, C. A. J. (2001). An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput. Meth. Biomech. Biomed. Engr. 4:209–230.CrossRefGoogle Scholar
  23. Fayad, Z. A., Fuster, V., Fallon, J. T., Jayasundera, T., Worthley, S. G., Helft, G., Aguinaldo, J. G., Badimon, J. J., and Sharma, S. K. (2000a). Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circ. 102:506–510.CrossRefGoogle Scholar
  24. Fayad, Z. A., Nahar, T., Fallon, J. T., Goldman, M., Aguinaldo, J. G., Badimon, J. J., Shinnar, M., Chesebro, J. H., and Fuster, V. (2000b). In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: A comparison with transesophageal echocardiography. Circ. 101:2503–2509.CrossRefGoogle Scholar
  25. Fischman, D. L., Leon, M. B., Bairn, D. S., Schatz, R. A., Savage, M. R., Penn, I., Detre, K., Veltri, L., Ricci, D., Nobuyoshi, M., Cleman, M. W., Heuser, R. R., Almond, D., Teirstein, P. S., Fish, R. D., Colombo, A., Brinker, J., Moses, J., Shaknovich, A., Hirshfeld, J., Bailey, S., Ellis, S., Rake, R., and Goldberg, S. (1994). A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent restenosis study investigators. New Engl. J. Med. 331:496–501.CrossRefGoogle Scholar
  26. Flory, P. J. (1961). Thermodynamic relations for highly elastic materials. Trans. Faraday Soc. 57:829–838.MathSciNetCrossRefGoogle Scholar
  27. Fung, Y. C., and Sobin, S. S. (1981). The retained elasticity of elastin under fixation agents. J. Biomech. Engr. 103:121–122.CrossRefGoogle Scholar
  28. Fung, Y. C., Fronek, K., and Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237:H620–H631.Google Scholar
  29. Fung, Y. C. (1971). Stress-strain-history relations of soft tissues in simple elongation. In Fung, Y. C., Perrone, N., and Anliker, M., eds., Biomechanics: Its Foundations and Objectives. New Jersey: Prentice-Hall, Inc., Englewood Cliffs. 181–208. Chapter 7.Google Scholar
  30. Fung, Y. C. (1993). Biomechanics. Mechanical Properties of Living Tissues. New York: Springer-Verlag, 2nd edition.Google Scholar
  31. Gasser, T. C., and Holzapfel, G. A. (2001). A rate-independent elastoplastic constitutive model for fiber-reinforced composites at finite strains: Continuum basis, algorithmic formulation and finite element implementation. Comput. Mech. in press.Google Scholar
  32. Gasser, T. C., Schulze-Bauer, C. A. J., and Holzapfel, G. A. (2002). A three-dimensional finite element model for arterial clamping. ASME J. Biomech. Eng. 124:355–363.CrossRefGoogle Scholar
  33. Goudreau, G. L., and Taylor, R. L. (1972). Evaluation of numerical integration methods in elastodynamics. Comput. Meth. Appl. Mech. Engr. 2:69–97.MathSciNetCrossRefGoogle Scholar
  34. Gow, B. S., and Hadfield, C.D. (1979). The elasticity of canine and human coronary arteries with reference to postmortem changes. Circ. Res. 45:588–594.CrossRefGoogle Scholar
  35. Harvey, J. G., and Gough, M. H. (1981). A comparison of the traumatic effects of vascular clamps. Br. J. Surg. 68:267–272.CrossRefGoogle Scholar
  36. Hayashi, K., Kamiya, A., and Ono, K., eds. (1996). Biomechanics — Functional Adaptation and Remodeling. Tokyo: Springer-Verlag.Google Scholar
  37. Hayashi, K. (1993). Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J. Biomech. Engr. 115:481–488.CrossRefGoogle Scholar
  38. Herrmann, L. R., and Peterson, F. E. (1968). A numerical procedure for viscoelastic stress analysis. in Proceedings 7th Meeting of ICRPG Mechanical Behavior Working Group, Orlando.Google Scholar
  39. Hibbitt, Karlsson, and Sorensen., eds. (1998). ABAQUS/Standard Users’s Manual, Version 5.8. Hibbitt, Karlsson and Sorensen, Inc.Google Scholar
  40. Hilber, H. M., Hughes, T. J. R., and Taylor, R. L. (1977). Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng. Struc. 5:282–292.Google Scholar
  41. Hinton, E., Rock, T., and Zienkiewicz, O. C. (1976). A note on mass lumping and related processes in the finite element method. Earthquake Eng. Struc. 4:245–249.CrossRefGoogle Scholar
  42. Holzapfel, G. A., and Gasser, T. C. (2001). A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput. Meth. Appl. Mech. Engr. 190:4379–4403.CrossRefGoogle Scholar
  43. Holzapfel, G. A., and Weizsäcker, H. W. (1998). Biomechanical behavior of the arterial wall and its numerical characterization. Comp. Biol. Med. 28:377–392.CrossRefGoogle Scholar
  44. Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. (2000a). A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48.MATHMathSciNetCrossRefGoogle Scholar
  45. Holzapfel, G. A., Schulze-Bauer, C. A. J., and Stadler, M. (2000b). Mechanics of angioplasty: Wall, balloon and stent. In Casey, J., and Bao, G., eds., Mechanics in Biology. New York: The American Society of Mechanical Engineers (ASME). AMD-Vol. 242/BED-Vol. 46, pp. 141–156.Google Scholar
  46. Holzapfel, G. A., Gasser, T. C., and Stadler, M. (2002a). A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis. Eur. J. Mech. A/Solids 21:441–463.MATHCrossRefGoogle Scholar
  47. Holzapfel, G. A., Stadler, M., and Schulze-Bauer, C. A. J. (2002b). A layer-specific 3D model for the finite element simulation of balloon angioplasty using MR imaging and mechanical testing. Ann. Biomed. Engr. 30:753–767.CrossRefGoogle Scholar
  48. Holzapfel, G. A. (1996). On large strain viscoelasticity: Continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Meth. Engr. 39:3903–3926.MATHCrossRefGoogle Scholar
  49. Holzapfel, G. A. (2000). Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Chichester: John Wiley & Sons.MATHGoogle Scholar
  50. Holzapfel, G. A. (2001). Biomechanics of soft tissue. In Lemaitre, J., ed., The Handbook of Materials Behavior Models. Volume III, Multiphysics Behaviors, Chapter 10, Composite Media, Biomaterials, 1049–1063. Boston: Academic Press.Google Scholar
  51. Hoschek, J., and Lasser, D., eds. (1993). Fundamentals of Computer Aided Geometric Design. Wellesly: A. K. Peters Ltd.MATHGoogle Scholar
  52. Hughes, T. J. R., and Pister, K. S. (1978). Consistent linearization in mechanics of solids and structures. Comput. & Structures 8:391–397.MATHMathSciNetCrossRefGoogle Scholar
  53. Hughes, T. J. R., Liu, W. K., and Brooks, A. (1979). Finite element analysis of incompressible viscous flows by the penalty function formulation. J. Comput. Phys. 30:1–60.MATHMathSciNetCrossRefGoogle Scholar
  54. Hughes, T. J. R. (2000). The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York: Dover.Google Scholar
  55. Humphrey, J. D. (1995). Mechanics of the arterial wall: Review and directions. Critical Reviews in Biomed. Engr. 23:1–162.Google Scholar
  56. Humphrey, J. D. (2002). Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. New York: Springer-Verlag.CrossRefGoogle Scholar
  57. Jackiewicz, T. A., McGeachie, J. K., and Tennant, M. (1996). Structural recovery of small arteries following clamp injury: a light and electron microscopic investigation in the rat. Microsurgery 17:674–680.CrossRefGoogle Scholar
  58. Langewouters, G. J., Wesseling, K. H., and Goedhard, W. J. A. (1984). The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J. Biomech. 17:425–435.CrossRefGoogle Scholar
  59. Learoyd, B. M., and Taylor, M. G. (1966). Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18:278–292.CrossRefGoogle Scholar
  60. Lubliner, J. (1990). Plasticity Theory. New York: Macmillan Publishing Company.MATHGoogle Scholar
  61. Luenberger, D. G. (1984). Linear and Nonlinear Programming. Reading, Massachusetts: Addison-Wesley Publishing Company.MATHGoogle Scholar
  62. Luk-Pat, G. T., Gold, G. E., Olcott, E. W., Hu, B. S., and Nishimura, D. G. (1999). High-resolution three-dimensional in vivo imaging of atherosclerotic plaque. Magn. Reson. Med. 42:762–771.CrossRefGoogle Scholar
  63. Macaya, C., Serruys, P. W., Ruygrok, P., Suryapranata, H., Mast, G., Klugmann, S., Urban, P., den Heijer, P., Koch, K., Simon, R., Morice, M. C., Crean, P., Bonnier, H., Wijns, W., Danchin, N., Bourdonnec, C., and Morel, M. A. (1996). Continued benefit of coronary stenting versus balloon angioplasty: One-year clinical follow-up of Benestent trial. Benestent Study Group. J. Am. Coll Cardiol 27:255–61.CrossRefGoogle Scholar
  64. Maltzahn, W.-W. V., and Warriyar, R. G. (1984). Experimental measurments of elastic properties of media and adventitia of bovine carotid arteries. J. Biomech. 17:839–847.CrossRefGoogle Scholar
  65. Margovsky, A. I., Lord, R. S. A., Meek, A. C., and Bobryshev, Y. V. (1997). Artery wall damage and platelet uptake from so-called atraumatic arterial clamps: An experimental study. Cardiol Surg. 5:42–47.CrossRefGoogle Scholar
  66. Mario, C. D., Gil, R., Camenzind, E., Ozaki, Y., von Birgelen, C., Umans, V., de Jaegere, P., de Feyter, P. J., Roelandt, J. R. T. C., and Serruys, P. W. (1995). Quantitative assessment with intracoronary ultrasound of the mechanism of restenosis after percutaneous transluminal coronary angioplasty and directional coronary atherectomy. Am. J. Cardiol. 75:772–777.CrossRefGoogle Scholar
  67. Martin, A. J., Gotlieb, A. I., and R.M., R. M. H. (1995). High-resolution MR imaging of human arteries. J. Magn. Reson. Imaging 5:93–100.CrossRefGoogle Scholar
  68. Matthies, H., and Strang, G. (1979). The solution of nonlinear finite element equations. Int. J. Numer. Meth. Engr. 14:1613–1626.MATHMathSciNetCrossRefGoogle Scholar
  69. Nagtegaal, J. C., Parks, D. M., and Rice, J. R. (1974). On numerically accurate finite element solutions in the fully plastic range. Comput. Meth. Appl. Mech. Engr. 4:153–177.MATHMathSciNetCrossRefGoogle Scholar
  70. Newmark, N. M. (1959). A method of computation for structural dynamics. J. Eng. Mech. Division, Proc. Am. Soc. of Civil Eng. 85:67–94.Google Scholar
  71. Nimni, M. E., and Harkness, R. D. (1988). Molecular structure and functions of collagen. In Nimni, M. E., ed., Collagen. Boca Raton, FL: CRC Press. 3–35.Google Scholar
  72. Nimni, M. E., ed. (1988). Collagen. 4 Vols: 1. Biochemistry; 2. Biochemistry and Biomechanics; 3. Biotechnology; 4. Molecular Biology. Boca Raton, FL: CRC Press.Google Scholar
  73. Oden, J. T., and Carey, G. F. (1984). Finite Elements: Mathematical Aspects, Volume IV Englewood Cliffs, N.J.: Prentice-Hall.Google Scholar
  74. Ogden, R. W., and Schulze-Bauer, C. A. J. (2000). Phenomenological and structural aspects of the mechanical response of arteries. In Casey, J., and Bao, G., eds., Mechanics in Biology. New York: The American Society of Mechanical Engineers (ASME). AMD-Vol. 242/BED-Vol. 46, pp. 125–140.Google Scholar
  75. Ogden, R. W. (1978). Nearly isochoric elastic deformations: Application to rubberlike solids. J. Mech. Phys. Solids 26:37–57.MATHMathSciNetCrossRefGoogle Scholar
  76. Ogden, R. W. (1997). Non-linear Elastic Deformations. New York: Dover.Google Scholar
  77. Patel, D. J., and Fry, D. L. (1969). The elastic symmetry of arterial segments in dogs. Circ. Res. 24:1–8.CrossRefGoogle Scholar
  78. Piegel, L. A., and Tiller, W. (1997). The NURBS Book. New York: Springer-Verlag, 2nd edition.CrossRefGoogle Scholar
  79. Rachev, A., Manoach, E., Berry, J., and Moore Jr., J. E. (2000). A model of stress-induced geometrical remodeling of vessel segments adjacent to stents and artery/graft anastomoses. J. Theoret. Biol. 206:429–443.CrossRefGoogle Scholar
  80. Rachev, A. (1997). Theoretical study of the effect of stress-dependent remodeling on arterial geometry under hypertensive conditions. J. Biomech. 30:819–827.CrossRefGoogle Scholar
  81. Rhodin, J. A. G. (1980). Architecture of the vessel wall. In Bohr, D. F., Somlyo, A. D., and Sparks, H. V., eds., Handbook of Physiology, The Cardiovascular System, Volume 2. Bethesda, Maryland: American Physiologial Society. 1–31.Google Scholar
  82. Richardson, P. D., Davies, M. J., and Born, G. V. R. (1989). Influence of plaque configuration and stress distribution on Assuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944.CrossRefGoogle Scholar
  83. Riks, E. (1984). Some computational aspects of stability analysis of nonlinear structures. Comput. Meth. Appl. Mech. Engr. 47:219–260.MATHCrossRefGoogle Scholar
  84. Roach, M. R., and Burton, A. C. (1957). The reason for the shape of the distensibility curve of arteries. Canad. J. Biochem. Physiol 35:681–690.CrossRefGoogle Scholar
  85. Rodriguez, E. K., Hoger, A., and McCulloch, A. D. (1994). Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27:455–467.CrossRefGoogle Scholar
  86. Rogers, W. J., Prichard, J. W., Hu, Y. L., Olson, P. R., Benckart, D. H., Kramer, C. M., Vido, D. A., and Reichek, N. (2000). Characterization of signal properties in atherosclerotic plaque components by intravascular MRI. Arterioscl. Thromb. and Vasc. Biol. 20:1824–1830.CrossRefGoogle Scholar
  87. Roy, C. S. (1880–82). The elastic properties of the arterial wall. J. Physiol 3:125–159.Google Scholar
  88. Schultze-Jena, B. S. (1939). Über die schraubenförmige Struktur der Arterienwand. Gegenbauers Morphol. Jahrbuch 83:230–246.Google Scholar
  89. Schulze-Bauer, C. A. J., Mörth, C., and Holzapfel, G. A. (2001). Passive biaxial mechanical response of aged human iliac arteries. ASME J. Biomech. Eng. in press.Google Scholar
  90. Schulze-Bauer, C. A. J., Regitnig, P., and Holzapfel, G. (2002). Mechanics of the human femoral adventitia including high-pressure response. Am. J. Physiol., Heart Circ. Physiol. 282:H2427–2440.Google Scholar
  91. Schweizerhof, K. H., and Ramm, E. (1984). Displacement dependent pressure loads in nonlinear finite element analysis. Comput. & Structures 18:1099–1114.MATHCrossRefGoogle Scholar
  92. Shinnar, M., Fallon, J. T., Wehrli, S., Levin, M., Dalmacy, D., Fayad, Z. A., Badimon, J. J., Harrington, M., Harrington, E., and Fuster, V. (1999). The diagnostic accuracy of ex vivo mri for human atherosclerotic plaque characterization. Arterioscl. Thromb. and Vase. Biol. 19:2756–2761.CrossRefGoogle Scholar
  93. Silver, F. H., Christiansen, D. L., and Buntin, C. M. (1989). Mechanical properties of the aorta: A review. Critical Reviews in Biomed. Engr. 17:323–358.Google Scholar
  94. Simo, J. C., and Hughes, T. J. R. (1998). Computational Inelasticity. New York: Springer-Verlag.MATHGoogle Scholar
  95. Simo, J. C., and Taylor, R. L. (1991). Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Meth. Appl. Mech. Engr. 85:273–310.MATHMathSciNetCrossRefGoogle Scholar
  96. Simo, J. C., Taylor, R. L., and Pister, K. S. (1985). Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput. Meth. Appl. Mech. Engr. 51:177–208.MATHMathSciNetCrossRefGoogle Scholar
  97. Skalak, R., Zargaryan, S., Jain, R. K., Netti, P. A., and Hoger, A. (1996). Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34:889–914.MATHGoogle Scholar
  98. Slayback, J. B., Bowen, W. W., and Hinshaw, D. B. (1976). Intimai injury from arterial clamps. Am. J. Surg. 132:183–188.CrossRefGoogle Scholar
  99. Spencer, A. J. M. (1984). Constitutive theory for strongly anisotropic solids. In Spencer, A. J. M., ed., Continuum Theory of the Mechanics of Fibre-Reinforced Composites. Wien: Springer-Verlag. 1–32. CISM Courses and Lectures No. 282, International Centre for Mechanical Sciences.Google Scholar
  100. Stary, H. C., Blankenhorn, D. H., Chandler, A. B., Glagov, S., Jr. Insull, W., Richardson, M., Rosenfeld, M. E., Schaffer, S. A., Schwartz, C. J., Wagner, W. D., and Wissler, R. W. (1992). A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Circ. 85:391–405.CrossRefGoogle Scholar
  101. Staubesand, J. (1959). Anatomie der Blutgefäße. I. Funktionelle Morphologie der Arterien, Venen und arterio-venösen Anastomosen. In Ratschow, M., ed., Angiology. Stuttgart: Thieme. Chapter 2, 23–82.Google Scholar
  102. Taber, L. (1995). Biomechanics of growth, remodelling, and morphognesis. Appl. Mech. Rev. 48:487–543.CrossRefGoogle Scholar
  103. Taber, L. A. (1998). A model for aortic growth based on fluid shear and fiber stress. J. Biomech. Engr. 120:348–354.CrossRefGoogle Scholar
  104. Tanaka, T. T., and Fung, Y. C. (1974). Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7:357–370.CrossRefGoogle Scholar
  105. Taylor, R. L., Pister, K. S., and Goudreau, G. L. (1970). Thermomechanical analysis of viscoelastic solids. Int. J. Numer. Meth. Engr. 2:45–59.MATHCrossRefGoogle Scholar
  106. Taylor, R. L. (2000). FEAP — A Finite Element Analysis Program — Version 7.3. University of California at Berkeley.Google Scholar
  107. The, S. H. K., Gussenhoven, E. J., Zhong, Y., Li, W., van Egmond, F., and Pieterman, H. (1992). Effect of balloon angioplasty on femoral artery evaluated with intravascular ultrasound imaging. Circ. 86:483–493.CrossRefGoogle Scholar
  108. Toussaint, J. F., Southern, J. F., Fuster, V., and Kantor, H. L. (1995). T2 contrast for nmr characterization of human atherosclerosis. Arterioscl. Thromb. and Vasc. Biol. 15:1533–1542.Google Scholar
  109. Toussaint, J. F., LaMuraglia, G. M., Southern, J. F., Fuster, V., and Kantor, H. L. (1996). Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circ. 94:932–938.Google Scholar
  110. Vaishnav, R. N., and Vossoughi, J. (1983). Estimation of residual strains in aortic segments. In Hall, C. W., ed., Biomedical Engineering II: Recent Developments. New York: Pergamon Press. 330–333.Google Scholar
  111. Valanis, K. C. (1972). Irreversible Thermodynamics of Continuous Media, Internal Variable Theory. Wien: Springer-Verlag.MATHGoogle Scholar
  112. Washizu, K. (1982). Variational Methods in Elasticity and Plasticity. Oxford: Pergamon Press. 3rd edition.MATHGoogle Scholar
  113. Weizsäcker, H. W., and Pinto, J. G. (1988). Isotropy and anisotropy of the arterial wall. J. Biomech. 21:477–487.CrossRefGoogle Scholar
  114. Wolinsky, H., and Glagov, S. (1967). A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20:90–111.Google Scholar
  115. Woo, S. L. Y., Simon, B. R., Kuei, S. C., and Akeson, W. H. (1979). Quasi-linear viscoelastic properties of normal articular cartilage. J. Biomech. Engr. 102:85–90.CrossRefGoogle Scholar
  116. Wood, W. L., Bossak, M., and Zienkiewicz, O. (1981). An alpha modification of Newmark’s method. Int. J. Numer. Meth. Engr. 15:1562–1566.MathSciNetCrossRefGoogle Scholar
  117. Wood, W. L. (1990). Practical Time-stepping Schemes. Oxford: Clarendon Press.MATHGoogle Scholar
  118. Wriggers, P. (2001). Nichtlineare Finite-Element-Methoden. Berlin: Springer-Verlag.MATHCrossRefGoogle Scholar
  119. Xie, J., Zhou, J., and Fung, Y. C. (1995). Bending of blood vessel wall: Stress-strain laws of the intima-media and adventitia layers. J. Biomech. Engr. 117:136–145.CrossRefGoogle Scholar
  120. Yu, Q., Zhou, J., and Fung, Y. C. (1993). Neutral axis location in bending and Young’s modulus of different layers of arterial wall. Am. J. Physiol. 265:H52–H60.Google Scholar
  121. Yuan, C., Murakami, J. W., Hayes, C. E., Tsuruda, J. S., Hatsukami, T. S., Wildy, K. S., Ferguson, M. S., and Strandness, D. E. (1995). Phased-array magnetic resonance imaging of the carotid artery bifurcation: Preliminary results in healthy volunteers and a patient with atherosclerotic disease. J. Magn. Reson. Imaging 5:561–565.CrossRefGoogle Scholar
  122. Zienkiewicz, O. C., and Taylor, R. L. (2000). The Finite Element Method. Solid Mechanics, Volume 2. Oxford: Butterworth Heinemann, 5th edition.Google Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Gerhard A. Holzapfel
    • 1
  1. 1.Institute for Structural Analysis - Computational BiomechanicsGraz University of TechnologyGrazAustria

Personalised recommendations