Skip to main content

Mechanical Properties of Soft Tissues and Arterial Walls

  • Chapter
Biomechanics of Soft Tissue in Cardiovascular Systems

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 441))

Abstract

Mechanical properties of biological tissues are fundamental and prerequisite for biomechanics. Basic mechanical properties, in particular those unique to biological soft tissues, and their mathematical formulation are described for several tissue examples. Then, the structure and composition of arterial walls are discussed along with the pressure-diameter and stress-strain relations and their mathematical description. The effects of pulsation, smooth muscle contraction, arterial site and aging on the mechanical properties are included in the discussion. Because of the importance of cellular mechanics in the physiological function of tissues and organs and their diseases, the mechanical properties of cells are also described together with several methodologies and techniques which have been used for the determination of the properties. Biomechanics is very useful for analyzing the pathogenesis of vascular diseases. Several examples of the application of biomechanics to arterial diseases are therefore examined, including arterial wall elasticity in atherosclerosis and hypertension, and the mechanical properties and vasospasm of cerebral arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albrecht-Buehler, G. (1987). Role of cortical tension in fibroblast shape and movement. Cell Motil. Cytoskel 7:54–67.

    Article  Google Scholar 

  • Aubert, X., Roquet, M. L., and van der Elst, J. (1981). The tension-length diagram of the frog’s sartorius muscle. Arch. Int. Physiol. 59:239–241.

    Article  Google Scholar 

  • Bereiter-Hahn, J., Karl, I., Luers, H., and Voth, M. (1995). Mechanical basis of cell shape: Investigations with the scanning acoustic microscope. Biochem. Cell Biol. 73:337–348.

    Article  Google Scholar 

  • Bergel, D. H. (1961). The static elastic properties of the arterial wall. J. Physiol. 156:445–457.

    Google Scholar 

  • Carew, T. E., Vaishnav, R. N., and Patel, D. J. (1968). Compressibility of the arterial wall. Circ. Res. 23:61–68.

    Article  Google Scholar 

  • Caro, C. G., Pedley, T. J., Schröter, R. C., and Seed, W. A. (1978). Mechanics of the circulation. Oxford Univ. Press.

    MATH  Google Scholar 

  • Castle, W. D., and Gow, B. S. (1983). Changes in the microindentation properties of aortic intimai surface during cholesterol feeding of rabbits. Atherosclerosis 47:251–261.

    Article  Google Scholar 

  • Chuong, C. J., and Fung, Y. C. (1984). Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17:35–40.

    Article  Google Scholar 

  • Fung, Y. C., Fronek, K., and Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol 237:H620–H631.

    Google Scholar 

  • Fung, Y. C. (1973). Biorheology of soft tissues. Biorheology 10:139–155.

    Google Scholar 

  • Fung, Y. C. (1993). Biomechanics. Mechanical Properties of Living Tissues. New York: Springer-Verlag, 2nd edition.

    Google Scholar 

  • Glerum, J. J., Mastrigt, R. V., and Koeveringe, A. J. V. (1990). Mechanical properties of mammalian single smooth muscle cells. III. Passive properties of pig detrusor and human a terme uterus cells. J. Muscle Res. Cell Motil. 11:453–462.

    Article  Google Scholar 

  • Goldmann, W. H., and Ezzell, R. M. (1996). Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology. Exp. Cell Res. 226:C234–237.

    Article  Google Scholar 

  • Gow, B. S., and Hadfield, C. D. (1979). The elasticity of canine and human coronary arteries with reference to postmortem changes. Circ. Res. 45:588–594.

    Article  Google Scholar 

  • Gow, B. S., and Taylor, M. G. (1968). Measurement of viscoelastic properties of arteries in the living dog. Circ. Res. 23:111–122.

    Article  Google Scholar 

  • Greenwald, S. E., and Berry, C. L. (1978). Static mechanical properties and chemical composition of the aorta of spontaneously hypertensive rats: A comparison with the effects of induced hypertension. Cardiovasc. Res. 12:364–372.

    Article  Google Scholar 

  • Hasegawa, M., and Azuma, T. (1974). Wall structure and static viscoelasticities of large veins. J. Jap. College Angiol. 14:87–92 (in Japanese).

    Google Scholar 

  • Hayashi, K., and Imai, Y. (1997). Tensile property of atherosclerotic plaque and an analysis of stress in atherosclerotic wall. J. Biomech. 30:573–579.

    Article  Google Scholar 

  • Hayashi, K., Sato, M., Handa, H., and Moritake, K. (1973). Biomechanical study of vascular walls (testing apparatus of mechanical behavior of vascular walls and measurement of volume fraction of their structural components). Proc. 16th Jap. Cong. Mat. Res. 240–244.

    Google Scholar 

  • Hayashi, K., Kiraly, R. J., and Nose, Y. (1979). Mechanical evaluation of storage treatment of natural tissues as valve materials. Artif. Organs 3, Suppl. (Proc. 2nd Meet. Int. Soc. Artif. Organs, New York): 417–422.

    Google Scholar 

  • Hayashi, K., Handa, H., Nagasawa, S., Okumura, A., and Moritake, K. (1980a). Stiffness and elastic behavior of human intracranial and extracranial arteries. J. Biomech. 13:175–184.

    Article  Google Scholar 

  • Hayashi, K., Nagasawa, S., Naruo, Y., Moritake, K., Okumura, A., and Handa, H. (1980b). Parametric description of mechanical behavior of arterial walls. J. Jap. Soc. Biorheology 3:75–78.

    Google Scholar 

  • Hayashi, K., Nagasawa, S., Naruo, Y., Okumura, A., Moritake, K., and Handa, H. (1980c). Mechanical properties of human cerebral arteries. Biorheology 17:211–218.

    Google Scholar 

  • Hayashi, K., Washizu, T., Tsushima, N., Kiraly, R. J., and Nose, Y. (1981). Mechanical properties of aortas and pulmonary arteries of calves implanted with cardiac prostheses. J. Biomech. 14:173–182.

    Article  Google Scholar 

  • Hayashi, K., Igarashi, Y., and Takamizawa, K. (1986). Mechanical properties and hemodynamics in coronary arteries. In New Approaches in Cardiac Mechanics, K. Kitamura, H. Abe and K. Sagawa (Eds). Tokyo: Gordon and Breach. 285–294.

    Google Scholar 

  • Hayashi, K., Ide, K., and Matsumoto, T. (1994). Aortic walls in atherosclerotic rabbits — Mechanical study. ASME J. Biomech. Eng. 116:284–293.

    Article  Google Scholar 

  • Hayashi, K., Stergiopulos, N., Meister, J.-J., Greenwald, S. E., and Rachev, A. (2001). Techniques in the determination of the mechanical properties and constitutive laws of arterial walls. In Leondes, C., ed., Cardiovascular Techniques Vol. II, Biomechanical Systems Techniques and Applications, 6–61. Boca Raton: CRC Press.

    Google Scholar 

  • Hayashi, K. (1993). Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. ASME J. Biomech. Eng. 115:481–488.

    Article  Google Scholar 

  • Hayashi, K. (2000). Biomechanics. Tokyo: Corona (in Japanese).

    Google Scholar 

  • Hochmuth, R. M., Ting-Beall, H. P., Beaty, B. B., Needham, D., and Tran-Son-Tay, R. (1993). Viscosity of passive human neutrophils undergoing small deformations. Biophys. J. 64:1596–1601.

    Article  Google Scholar 

  • Hoh, J. H., and Schoenenberger, C. A. (1994). Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107:1105–1114.

    Google Scholar 

  • Hudetz, A. G., Mark, G., Kovach, A. G. B., Kerenyi, T., Fody, L., and Monos, E. (1981). Biomechanical properties of normal and flbrosclerotic human cerebral arteries. Atherosclerosis 39:353–365.

    Article  Google Scholar 

  • Hudetz, A. G. (1979). Incremental elastic modulus for orthotropic incompressible arteries. J. Biomech. 12:651–655.

    Article  Google Scholar 

  • Humphrey, J. D. (1995). Mechanics of the arterial wall: Review and directions. Crit. Rev. Biomed. Eng. 23:1–162.

    Google Scholar 

  • Kawasaki, T., Sasayama, S., Yagi, S., Asakawa, T., and Hirai, T. (1987). Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc. Res. 21:678–687.

    Article  Google Scholar 

  • Klosner, J. M., and Segal, A. (1969). Mechanical characterization of a natural rubber. PIBAL Report. 69–42, Polytechnic Inst.

    Google Scholar 

  • Kotera, H., and Hayashi, K. (1981). A study on the dynamic mechanical behavior of arterial wall. J. Jap. Soc. Biorheology 88–91 (in Japanese).

    Google Scholar 

  • Lal, R., and John, S. A. (1994). Biological applications of atomic force microscopy. Am. J. Physiol. 266:C1–C21.

    Google Scholar 

  • Lanir, Y., and Fung, Y. C. (1974). Two-dimensional mechanical properties of rabbit skin: II. Experimental results. J. Biomech. 7:171–182.

    Article  Google Scholar 

  • Learoyd, B. M., and Taylor, M. G. (1966). Alterations with age in the viscoelastic properties of human aortic walls. Circ. Res. 18:278–292.

    Article  Google Scholar 

  • Matsumoto, T., and Hayashi, K. (1994). Mechanical and dimensional adaptation of rat aorta to hypertension. ASME J. Biomech. Eng. 116:278–283.

    Article  Google Scholar 

  • Miyazaki, H., and Hayashi, K. (1999). Atomic force microscopic measurement of the mechanical properties of intact endothelial cells in fresh arteries. Med. & Biol. Eng. & Comput. 37:530–536.

    Article  Google Scholar 

  • Miyazaki, H., Hasegawa, Y., and Hayashi, K. (2000). A newly designed tensile tester for cells and its application to fibroblasts. J. Biomech. 33:97–104.

    Article  Google Scholar 

  • Miyazaki, H., Hasegawa, Y., and Hayashi, K. (2001). Tensile properties of vascular smooth muscle cells. Proc. 2001 Bioeng. Conf. — ASME BED-Vol. 50:155–156.

    Google Scholar 

  • Moritake, K., Handa, H., Okumura, A., Hayashi, K., and Numi, H. (1974). Stiffness of cerebral arteries — Its role in the pathogenesis of cerebral aneurysms. Neurologia Medico-Chirurgica 14–1:47–53.

    Article  Google Scholar 

  • Nagasawa, S., Handa, H., Okumura, A., Naruo, Y., Moritake, K., and Hayashi, K. (1979). Mechanical properties of human cerebral arteries: Part 1 Effects of age and vascular smooth muscle activation. Surg. Neurol. 12:297–304.

    Google Scholar 

  • Nagasawa, S., Handa, H., Okumura, A., Naruo, Y., Moritake, K., and Hayashi, K. (1980). Mechanical properties of human cerebral arteries: Part 2 Vasospasm. Surg. Neurol. 14:285–290.

    Google Scholar 

  • Nagasawa, S., Handa, H., Naruo, Y., Moritake, K., and Hayashi, K. (1982). Experimental cerebral vasospasm: Arterial wall mechanics and connective tissue composition. Stroke 13:595–600.

    Article  Google Scholar 

  • Nagasawa, S., Handa, H., Naruo, Y., Watanabe, H., Moritake, K., and Hayashi, K. (1983). Experimental cerebral vasospasm: Part 2 contractility of spastic arterial wall. Stroke 14:579–584.

    Article  Google Scholar 

  • Nerem, R. M. (1992). Vascular fluid mechanics, the arterial wall, and atherosclerosis. ASME J. Biomech. Eng. 114:274–282.

    Article  Google Scholar 

  • Palmer, R. E., Brady, A. J., and Roos, K. P. (1996). Mechanical measurements from isolated cardiac myocytes using a pipette attachment system. Am. J. Physiol. 270:C697–C704.

    Google Scholar 

  • Patel, D. J., Greenfield, J. C., and Fry, D. L. (1964). In vivo pressure-length-radius relationship of certain blood vessels in man and dog. In Attinger, E. O., ed., Pulsatile Blood Flow. New York: McGraw-Hill.

    Google Scholar 

  • Peterson, L. H., Jensen, R. E., and Parnell, R. (1960). Mechanical properties of arteries in vivo. Circ. Res. 8:622–639.

    Article  Google Scholar 

  • Reneman, R. S., van Merode, T., Hick, P., Muytjens, A. M. M., and Hoeks, A. P. G. (1986). Age-related changes in carotid artery wall properties in men. Ultrasound in Medicine and Biology 12:465–471.

    Article  Google Scholar 

  • Ricci, D., Tedesco, M., and Grattarola, M. (1997). Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy. Microsc. Res. Tech. 36:165–171.

    Article  Google Scholar 

  • Richter, H. A., and Mittermayer, C. H. (1984). Volume elasticity, modulus of elasticity and compliance of normal and atherosclerotic human aorta. Biorheology 21:723–734.

    Google Scholar 

  • Ridge, M. D., and Wright, V. (1966). The directional effect of skin — A bioengineering study of skin with particular reference to Langer’s lines. J. Invest. Dermatol 46:341–346.

    Google Scholar 

  • Roach, M. R., and Burton, A. C. (1957). The reason for the shape of the distensibility curves of arteries. Canad. J. Biochem. Physiol 35:681–690.

    Article  Google Scholar 

  • Sato, M., Levesque, M. J., and Nerem, R. M. (1987a). An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells. ASME J. Biomech. Eng. 109:27–34.

    Article  Google Scholar 

  • Sato, M., Levesque, M. J., and Nerem, R. M. (1987b). Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286.

    Article  Google Scholar 

  • Shroff, S. G., Saner, D. R., and Lal, R. (1995). Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am. J. Phys. 269:C286–C292.

    Google Scholar 

  • Takamizawa, K., and Hayashi, K. (1987). Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20:7–17.

    Article  Google Scholar 

  • Thoumine, O., and Ott, A. (1997). Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110:2109–2116.

    Google Scholar 

  • Tong, R., and Fung, Y. C. (1976). The stress-strain relationship for the skin. J. Biomech. 9:649–657.

    Article  Google Scholar 

  • Vaishnav, R. N., Young, J. T., and Patel, D. J. (1973). Distribution of stresses an strain energy density through the wall thickness in a canine aortic segment. Circ. Res. 32:577–583.

    Article  Google Scholar 

  • Vaishnav, R. N., Vossoughi, J., Patel, D. J., Cothran, D. J., Coleman, B. R., and Ison-Franklin, E. L. (1990). Effect of hypertension on elasticity and geometry of aortic tissue from dogs. ASME J. Biomech. Eng. 112:70–74.

    Article  Google Scholar 

  • Valberg, P. A., and Feldman, H. A. (1987). Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys. J. 52:551–561.

    Article  Google Scholar 

  • Vawter, D. L., Fung, Y. C., and West, J. B. (1978). Elasticity of excised dog lung parenchyma. J. Appl. Physiol. 45:261–269.

    Google Scholar 

  • Wang, N., and Ingber, D. E. (1994). Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66:2181–2189.

    Article  Google Scholar 

  • Weisenhorn, A. L., Khorsandi, M., Kasas, S., Gotzos, V., and Butt, H. J. (1993). Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4:106–113.

    Article  Google Scholar 

  • Woo, S. L.-Y., Lubock, P., Gomez, M. A., Jemmott, G. F., Kuei, S. C., and Akeson, W. H. (1979). Large deformation nonhomogeneous and directional properties of articular cartilage. J. Biomech. 12:437–446.

    Article  Google Scholar 

  • Yamamoto, E., Hayashi, K., and Yamamoto, N. (1999). Mechanical properties of collagen fascicles from the rabbit patellar tendon. ASME J. Biomech. Eng. 121:124–131.

    Article  Google Scholar 

  • Zahalak, G. I., McConnaughey, W. B., and Elson, E. L. (1990). Determination of cellular mechanical properties by cell poking, with an application to leukocytes. ASME J. Biomech. Eng. 112:283–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Hayashi, K. (2003). Mechanical Properties of Soft Tissues and Arterial Walls. In: Holzapfel, G.A., Ogden, R.W. (eds) Biomechanics of Soft Tissue in Cardiovascular Systems. International Centre for Mechanical Sciences, vol 441. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2736-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2736-0_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00455-5

  • Online ISBN: 978-3-7091-2736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics