Mechanical Properties of Soft Tissues and Arterial Walls

  • Kozaburo Hayashi
Part of the International Centre for Mechanical Sciences book series (CISM, volume 441)


Mechanical properties of biological tissues are fundamental and prerequisite for biomechanics. Basic mechanical properties, in particular those unique to biological soft tissues, and their mathematical formulation are described for several tissue examples. Then, the structure and composition of arterial walls are discussed along with the pressure-diameter and stress-strain relations and their mathematical description. The effects of pulsation, smooth muscle contraction, arterial site and aging on the mechanical properties are included in the discussion. Because of the importance of cellular mechanics in the physiological function of tissues and organs and their diseases, the mechanical properties of cells are also described together with several methodologies and techniques which have been used for the determination of the properties. Biomechanics is very useful for analyzing the pathogenesis of vascular diseases. Several examples of the application of biomechanics to arterial diseases are therefore examined, including arterial wall elasticity in atherosclerosis and hypertension, and the mechanical properties and vasospasm of cerebral arteries.


Arterial Wall Arterial Stiffness Thoracic Aorta Wall Stiffness Biological Soft Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht-Buehler, G. (1987). Role of cortical tension in fibroblast shape and movement. Cell Motil. Cytoskel 7:54–67.CrossRefGoogle Scholar
  2. Aubert, X., Roquet, M. L., and van der Elst, J. (1981). The tension-length diagram of the frog’s sartorius muscle. Arch. Int. Physiol. 59:239–241.CrossRefGoogle Scholar
  3. Bereiter-Hahn, J., Karl, I., Luers, H., and Voth, M. (1995). Mechanical basis of cell shape: Investigations with the scanning acoustic microscope. Biochem. Cell Biol. 73:337–348.CrossRefGoogle Scholar
  4. Bergel, D. H. (1961). The static elastic properties of the arterial wall. J. Physiol. 156:445–457.Google Scholar
  5. Carew, T. E., Vaishnav, R. N., and Patel, D. J. (1968). Compressibility of the arterial wall. Circ. Res. 23:61–68.CrossRefGoogle Scholar
  6. Caro, C. G., Pedley, T. J., Schröter, R. C., and Seed, W. A. (1978). Mechanics of the circulation. Oxford Univ. Press.MATHGoogle Scholar
  7. Castle, W. D., and Gow, B. S. (1983). Changes in the microindentation properties of aortic intimai surface during cholesterol feeding of rabbits. Atherosclerosis 47:251–261.CrossRefGoogle Scholar
  8. Chuong, C. J., and Fung, Y. C. (1984). Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17:35–40.CrossRefGoogle Scholar
  9. Fung, Y. C., Fronek, K., and Patitucci, P. (1979). Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol 237:H620–H631.Google Scholar
  10. Fung, Y. C. (1973). Biorheology of soft tissues. Biorheology 10:139–155.Google Scholar
  11. Fung, Y. C. (1993). Biomechanics. Mechanical Properties of Living Tissues. New York: Springer-Verlag, 2nd edition.Google Scholar
  12. Glerum, J. J., Mastrigt, R. V., and Koeveringe, A. J. V. (1990). Mechanical properties of mammalian single smooth muscle cells. III. Passive properties of pig detrusor and human a terme uterus cells. J. Muscle Res. Cell Motil. 11:453–462.CrossRefGoogle Scholar
  13. Goldmann, W. H., and Ezzell, R. M. (1996). Viscoelasticity in wild-type and vinculin-deficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology. Exp. Cell Res. 226:C234–237.CrossRefGoogle Scholar
  14. Gow, B. S., and Hadfield, C. D. (1979). The elasticity of canine and human coronary arteries with reference to postmortem changes. Circ. Res. 45:588–594.CrossRefGoogle Scholar
  15. Gow, B. S., and Taylor, M. G. (1968). Measurement of viscoelastic properties of arteries in the living dog. Circ. Res. 23:111–122.CrossRefGoogle Scholar
  16. Greenwald, S. E., and Berry, C. L. (1978). Static mechanical properties and chemical composition of the aorta of spontaneously hypertensive rats: A comparison with the effects of induced hypertension. Cardiovasc. Res. 12:364–372.CrossRefGoogle Scholar
  17. Hasegawa, M., and Azuma, T. (1974). Wall structure and static viscoelasticities of large veins. J. Jap. College Angiol. 14:87–92 (in Japanese).Google Scholar
  18. Hayashi, K., and Imai, Y. (1997). Tensile property of atherosclerotic plaque and an analysis of stress in atherosclerotic wall. J. Biomech. 30:573–579.CrossRefGoogle Scholar
  19. Hayashi, K., Sato, M., Handa, H., and Moritake, K. (1973). Biomechanical study of vascular walls (testing apparatus of mechanical behavior of vascular walls and measurement of volume fraction of their structural components). Proc. 16th Jap. Cong. Mat. Res. 240–244.Google Scholar
  20. Hayashi, K., Kiraly, R. J., and Nose, Y. (1979). Mechanical evaluation of storage treatment of natural tissues as valve materials. Artif. Organs 3, Suppl. (Proc. 2nd Meet. Int. Soc. Artif. Organs, New York): 417–422.Google Scholar
  21. Hayashi, K., Handa, H., Nagasawa, S., Okumura, A., and Moritake, K. (1980a). Stiffness and elastic behavior of human intracranial and extracranial arteries. J. Biomech. 13:175–184.CrossRefGoogle Scholar
  22. Hayashi, K., Nagasawa, S., Naruo, Y., Moritake, K., Okumura, A., and Handa, H. (1980b). Parametric description of mechanical behavior of arterial walls. J. Jap. Soc. Biorheology 3:75–78.Google Scholar
  23. Hayashi, K., Nagasawa, S., Naruo, Y., Okumura, A., Moritake, K., and Handa, H. (1980c). Mechanical properties of human cerebral arteries. Biorheology 17:211–218.Google Scholar
  24. Hayashi, K., Washizu, T., Tsushima, N., Kiraly, R. J., and Nose, Y. (1981). Mechanical properties of aortas and pulmonary arteries of calves implanted with cardiac prostheses. J. Biomech. 14:173–182.CrossRefGoogle Scholar
  25. Hayashi, K., Igarashi, Y., and Takamizawa, K. (1986). Mechanical properties and hemodynamics in coronary arteries. In New Approaches in Cardiac Mechanics, K. Kitamura, H. Abe and K. Sagawa (Eds). Tokyo: Gordon and Breach. 285–294.Google Scholar
  26. Hayashi, K., Ide, K., and Matsumoto, T. (1994). Aortic walls in atherosclerotic rabbits — Mechanical study. ASME J. Biomech. Eng. 116:284–293.CrossRefGoogle Scholar
  27. Hayashi, K., Stergiopulos, N., Meister, J.-J., Greenwald, S. E., and Rachev, A. (2001). Techniques in the determination of the mechanical properties and constitutive laws of arterial walls. In Leondes, C., ed., Cardiovascular Techniques Vol. II, Biomechanical Systems Techniques and Applications, 6–61. Boca Raton: CRC Press.Google Scholar
  28. Hayashi, K. (1993). Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. ASME J. Biomech. Eng. 115:481–488.CrossRefGoogle Scholar
  29. Hayashi, K. (2000). Biomechanics. Tokyo: Corona (in Japanese).Google Scholar
  30. Hochmuth, R. M., Ting-Beall, H. P., Beaty, B. B., Needham, D., and Tran-Son-Tay, R. (1993). Viscosity of passive human neutrophils undergoing small deformations. Biophys. J. 64:1596–1601.CrossRefGoogle Scholar
  31. Hoh, J. H., and Schoenenberger, C. A. (1994). Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107:1105–1114.Google Scholar
  32. Hudetz, A. G., Mark, G., Kovach, A. G. B., Kerenyi, T., Fody, L., and Monos, E. (1981). Biomechanical properties of normal and flbrosclerotic human cerebral arteries. Atherosclerosis 39:353–365.CrossRefGoogle Scholar
  33. Hudetz, A. G. (1979). Incremental elastic modulus for orthotropic incompressible arteries. J. Biomech. 12:651–655.CrossRefGoogle Scholar
  34. Humphrey, J. D. (1995). Mechanics of the arterial wall: Review and directions. Crit. Rev. Biomed. Eng. 23:1–162.Google Scholar
  35. Kawasaki, T., Sasayama, S., Yagi, S., Asakawa, T., and Hirai, T. (1987). Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc. Res. 21:678–687.CrossRefGoogle Scholar
  36. Klosner, J. M., and Segal, A. (1969). Mechanical characterization of a natural rubber. PIBAL Report. 69–42, Polytechnic Inst.Google Scholar
  37. Kotera, H., and Hayashi, K. (1981). A study on the dynamic mechanical behavior of arterial wall. J. Jap. Soc. Biorheology 88–91 (in Japanese).Google Scholar
  38. Lal, R., and John, S. A. (1994). Biological applications of atomic force microscopy. Am. J. Physiol. 266:C1–C21.Google Scholar
  39. Lanir, Y., and Fung, Y. C. (1974). Two-dimensional mechanical properties of rabbit skin: II. Experimental results. J. Biomech. 7:171–182.CrossRefGoogle Scholar
  40. Learoyd, B. M., and Taylor, M. G. (1966). Alterations with age in the viscoelastic properties of human aortic walls. Circ. Res. 18:278–292.CrossRefGoogle Scholar
  41. Matsumoto, T., and Hayashi, K. (1994). Mechanical and dimensional adaptation of rat aorta to hypertension. ASME J. Biomech. Eng. 116:278–283.CrossRefGoogle Scholar
  42. Miyazaki, H., and Hayashi, K. (1999). Atomic force microscopic measurement of the mechanical properties of intact endothelial cells in fresh arteries. Med. & Biol. Eng. & Comput. 37:530–536.CrossRefGoogle Scholar
  43. Miyazaki, H., Hasegawa, Y., and Hayashi, K. (2000). A newly designed tensile tester for cells and its application to fibroblasts. J. Biomech. 33:97–104.CrossRefGoogle Scholar
  44. Miyazaki, H., Hasegawa, Y., and Hayashi, K. (2001). Tensile properties of vascular smooth muscle cells. Proc. 2001 Bioeng. Conf. — ASME BED-Vol. 50:155–156.Google Scholar
  45. Moritake, K., Handa, H., Okumura, A., Hayashi, K., and Numi, H. (1974). Stiffness of cerebral arteries — Its role in the pathogenesis of cerebral aneurysms. Neurologia Medico-Chirurgica 14–1:47–53.CrossRefGoogle Scholar
  46. Nagasawa, S., Handa, H., Okumura, A., Naruo, Y., Moritake, K., and Hayashi, K. (1979). Mechanical properties of human cerebral arteries: Part 1 Effects of age and vascular smooth muscle activation. Surg. Neurol. 12:297–304.Google Scholar
  47. Nagasawa, S., Handa, H., Okumura, A., Naruo, Y., Moritake, K., and Hayashi, K. (1980). Mechanical properties of human cerebral arteries: Part 2 Vasospasm. Surg. Neurol. 14:285–290.Google Scholar
  48. Nagasawa, S., Handa, H., Naruo, Y., Moritake, K., and Hayashi, K. (1982). Experimental cerebral vasospasm: Arterial wall mechanics and connective tissue composition. Stroke 13:595–600.CrossRefGoogle Scholar
  49. Nagasawa, S., Handa, H., Naruo, Y., Watanabe, H., Moritake, K., and Hayashi, K. (1983). Experimental cerebral vasospasm: Part 2 contractility of spastic arterial wall. Stroke 14:579–584.CrossRefGoogle Scholar
  50. Nerem, R. M. (1992). Vascular fluid mechanics, the arterial wall, and atherosclerosis. ASME J. Biomech. Eng. 114:274–282.CrossRefGoogle Scholar
  51. Palmer, R. E., Brady, A. J., and Roos, K. P. (1996). Mechanical measurements from isolated cardiac myocytes using a pipette attachment system. Am. J. Physiol. 270:C697–C704.Google Scholar
  52. Patel, D. J., Greenfield, J. C., and Fry, D. L. (1964). In vivo pressure-length-radius relationship of certain blood vessels in man and dog. In Attinger, E. O., ed., Pulsatile Blood Flow. New York: McGraw-Hill.Google Scholar
  53. Peterson, L. H., Jensen, R. E., and Parnell, R. (1960). Mechanical properties of arteries in vivo. Circ. Res. 8:622–639.CrossRefGoogle Scholar
  54. Reneman, R. S., van Merode, T., Hick, P., Muytjens, A. M. M., and Hoeks, A. P. G. (1986). Age-related changes in carotid artery wall properties in men. Ultrasound in Medicine and Biology 12:465–471.CrossRefGoogle Scholar
  55. Ricci, D., Tedesco, M., and Grattarola, M. (1997). Mechanical and morphological properties of living 3T6 cells probed via scanning force microscopy. Microsc. Res. Tech. 36:165–171.CrossRefGoogle Scholar
  56. Richter, H. A., and Mittermayer, C. H. (1984). Volume elasticity, modulus of elasticity and compliance of normal and atherosclerotic human aorta. Biorheology 21:723–734.Google Scholar
  57. Ridge, M. D., and Wright, V. (1966). The directional effect of skin — A bioengineering study of skin with particular reference to Langer’s lines. J. Invest. Dermatol 46:341–346.Google Scholar
  58. Roach, M. R., and Burton, A. C. (1957). The reason for the shape of the distensibility curves of arteries. Canad. J. Biochem. Physiol 35:681–690.CrossRefGoogle Scholar
  59. Sato, M., Levesque, M. J., and Nerem, R. M. (1987a). An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells. ASME J. Biomech. Eng. 109:27–34.CrossRefGoogle Scholar
  60. Sato, M., Levesque, M. J., and Nerem, R. M. (1987b). Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286.CrossRefGoogle Scholar
  61. Shroff, S. G., Saner, D. R., and Lal, R. (1995). Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic force microscopy. Am. J. Phys. 269:C286–C292.Google Scholar
  62. Takamizawa, K., and Hayashi, K. (1987). Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20:7–17.CrossRefGoogle Scholar
  63. Thoumine, O., and Ott, A. (1997). Time scale dependent viscoelastic and contractile regimes in fibroblasts probed by microplate manipulation. J. Cell Sci. 110:2109–2116.Google Scholar
  64. Tong, R., and Fung, Y. C. (1976). The stress-strain relationship for the skin. J. Biomech. 9:649–657.CrossRefGoogle Scholar
  65. Vaishnav, R. N., Young, J. T., and Patel, D. J. (1973). Distribution of stresses an strain energy density through the wall thickness in a canine aortic segment. Circ. Res. 32:577–583.CrossRefGoogle Scholar
  66. Vaishnav, R. N., Vossoughi, J., Patel, D. J., Cothran, D. J., Coleman, B. R., and Ison-Franklin, E. L. (1990). Effect of hypertension on elasticity and geometry of aortic tissue from dogs. ASME J. Biomech. Eng. 112:70–74.CrossRefGoogle Scholar
  67. Valberg, P. A., and Feldman, H. A. (1987). Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and motile activity. Biophys. J. 52:551–561.CrossRefGoogle Scholar
  68. Vawter, D. L., Fung, Y. C., and West, J. B. (1978). Elasticity of excised dog lung parenchyma. J. Appl. Physiol. 45:261–269.Google Scholar
  69. Wang, N., and Ingber, D. E. (1994). Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66:2181–2189.CrossRefGoogle Scholar
  70. Weisenhorn, A. L., Khorsandi, M., Kasas, S., Gotzos, V., and Butt, H. J. (1993). Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4:106–113.CrossRefGoogle Scholar
  71. Woo, S. L.-Y., Lubock, P., Gomez, M. A., Jemmott, G. F., Kuei, S. C., and Akeson, W. H. (1979). Large deformation nonhomogeneous and directional properties of articular cartilage. J. Biomech. 12:437–446.CrossRefGoogle Scholar
  72. Yamamoto, E., Hayashi, K., and Yamamoto, N. (1999). Mechanical properties of collagen fascicles from the rabbit patellar tendon. ASME J. Biomech. Eng. 121:124–131.CrossRefGoogle Scholar
  73. Zahalak, G. I., McConnaughey, W. B., and Elson, E. L. (1990). Determination of cellular mechanical properties by cell poking, with an application to leukocytes. ASME J. Biomech. Eng. 112:283–294.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Kozaburo Hayashi
    • 1
  1. 1.Graduate School of Engineering Science, Biomechanics Laboratory, Division of Mechanical ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations