A Generalization of the Rate-Distortion Theory and Applications

  • Moshe Zakai
  • Jacob Ziv
Part of the International Centre for Mechanical Sciences book series (CISM, volume 219)


We start with the well known model of a communication system:


Convex Function Generalize Entropy Rate Distortion Asymptotic Optimality Average Distortion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berger, T., Rate Distortion Theory, Prentice Hall, New Jersey, 1971.Google Scholar
  2. 2.
    Ziv, J., Zakai, M., On functionals satisfying a data-processing theorem, IEEE Trans. on Inf. Th., IT-19, 275, 1973.Google Scholar
  3. 3.
    Csiszar, I., A class of measures of informativity of observation channels, Periodica Mathematica Hungacrica, 2, 191, 1972.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Roberts, A.W., Varberg, D.E., Convex Functions, Academic Press, London, 1973.MATHGoogle Scholar
  5. 5.
    Van Trees, H.L., Detection, Estimation and Modulation, Wiley, New York, 1968; Vol. I.Google Scholar
  6. 6.
    Wyner, A.D., Ziv. J., On communication of analog data from a bounded source space, Bell Syst. Tech. J., 48, 3139, 1969.CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bellini, S., Tartara, G., Bounds on error in signal parameter estimation, IEEE Trans. on Communications, 340, 1974.Google Scholar
  8. 8.
    Chazan, D., Ziv, J., Zakai, M., Improved lower bounds on signal parameter estimation, IEEE Trans. on Inf. Th., IT-21, 90, 1975.Google Scholar
  9. 9.
    Kailath, T., The divergence and Bhattachayya distance measures in signal selection, IEEE Trans. Commun. Technol., COM-15, 52, 1967.Google Scholar
  10. 10.
    Neveu, J., Mathematical Foundations of the Calculus of Probability, Holden-Day, San Francisco, 1965.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • Moshe Zakai
    • 1
  • Jacob Ziv
    • 1
  1. 1.Department of Electrical EngineeringTechnion — Israel Institute of TechnologyHaifaIsrael

Personalised recommendations