Advertisement

Experimental Results of Stress Wave Investigations

  • H. Kolsky
Part of the International Centre for Mechanical Sciences book series (CISM, volume 222)

Abstract

Experimental work plays two distinct rôles in the study of stress wave propagation in solids. The first of these is to verify conclusions which have been reached as a result of the mathematical analysis of a dynamic elastic type of loading, or to find the wave pattern in situations where mathematically the problem is a perfectly well-posed one with well-defined initial or boundary conditions, but where the complexity of the mathematical analysis is such that it is impossible to obtain a solution in analytic form. In either of these situations the stress wave experiments are acting as analog computers solving known partial differential equations with well-defined boundary conditions. This type of experiment is a dynamic counterpart of the use of stress analysis techniques to the static elastic loading of engineering structures, where by the use of photoelastic models or of electrical strain gages on elastic models, the strains are measured under conditions of quasi-static loading. The geometry of these structures is generally too complicated to be treated analytically, and although the constitutive relations between the stress and strain tensors is well-established, (the material is assumed to obey Hooke’s Law), and the boundary conditions are perfectly well-defined, an analytic solution cannot in general be obtained, and experiments have to be carried out to determine the form of the elastic solution.

Keywords

Elastic Wave Natural Rubber Stress Wave High Speed Photography Stress Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Kolsky, H., Stress Waves in Solids, Clarendon Press, Oxford, 1953 (Dover reprint, 1964 ).Google Scholar
  2. 2).
    Ewing, W.M., Jardetsky, W.S. and Press, F., Elastic Waves in Layered Media, McGraw-Hill, New York, 1957.Google Scholar
  3. 3).
    Rinehart, J.S. and Pearson, J., Behavior of Metals under Impulsive Loads, Amer. Soc. Metals, 1954(Dover reprint, 1965 ).Google Scholar
  4. 4).
    Goldsmith, W., Impact ( Edward Arnold: London, 1960 ).MATHGoogle Scholar
  5. 5).
    Averbach, J.D., Wave Propagation in Elastic Solids, (North Holland, 1973 ).Google Scholar
  6. 6).
    Encyclopedia of Physics, Vol. VI Mechanics of Solids (Springer Verlag) The Experimental Foundations of Solid Mechanics, J.F. Bell (1973).Google Scholar
  7. 7).
    Abramson, H.N., Plass, H.J. and Ripperger, E.P., Stress wave propagation in rods and beams, Advances in Appl. Mech. 5, pp. 111 (1958).MathSciNetCrossRefMATHGoogle Scholar
  8. 8).
    International Symposium on Stress Wave Propagation in Materials (ed. N. Davids), Interscience, New York (1960).Google Scholar
  9. 9).
    Stress Waves in Anelastic Solids Proceedings of IUTAM Symposium held at Brown University, 1963 (ed. H. Kolsky and W. Prager), Springer-Verlag, 1964.Google Scholar
  10. 10).
    Kolsky, H., Experimental Wave Propagation in Solids, Structural Mechanics (ed. J.N. Goodier and N.J. Hoff) Pergamon, New York, 1960.Google Scholar
  11. 11).
    Hunter, S.C., Energy absorbed by elastic waves during impact. J. Mech. and Phys. Solids 3, 162, 1954.Google Scholar
  12. 12).
    Hopkinson, B., A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Phil. Trans. Roy. Soc. 213A, p. 375, 1914.Google Scholar
  13. 13).
    Sears, J.E., Longitudinal impact of metal rods with rounded ends. Proc. Camb. Phil. Soc. 14, p. 237, (1907).Google Scholar
  14. 14).
    Phillips, J.W., Stress pulses produced during the fracture of brittle tensile specimens. Int. J. Sol. Struct. 6, p. 1403 (1970).CrossRefGoogle Scholar
  15. 15).
    Kolsky, H., Production of tensile shock waves in stretched natural rubber. Nature 224, p. 1301, (1969).CrossRefADSGoogle Scholar
  16. 16).
    Christie, D.G., An investigation of cracks and stress waves in glass and plastics by high-speed photography. J. Soc. Glass Tech. 36, p. 74 (1952).Google Scholar
  17. 17).
    Christie, D.G., Reflection of elastic waves from a free boundary. Phil. Mag. 46, p. 527 (1955).MathSciNetGoogle Scholar
  18. 18).
    Curtis., Elastic strain-pulse in a semi-infinite bar. Stress Wave Propagation in Materials, p. 15, Interscience, 1960.Google Scholar
  19. 19).
    Kolsky, H., Electromagnetic waves emitted on detonation of explosives. Nature 173, p. 77 (1959).CrossRefADSGoogle Scholar
  20. 20).
    Bergmann., L., Der Ultraschall: Hirzel, Stuttgart (1920).Google Scholar
  21. 21).
    Richardson, E.G., Ultrasonic Physics: Elsevier, Amsterdam, 1957.Google Scholar
  22. 22).
    Mason, W.P., Piezoelectric Crystals and their Applications in Ultrasonics: Van Nostrand, New York, 1950.Google Scholar
  23. 23).
    Hueter, T.F., and Bolt, R.H., Sonics, John Wiley, New York, 1955.Google Scholar
  24. 24).
    Truell, R., Elbaum, C. and Chick, B., Ultrasonic Methods in Solid State Physics, Academic Press, New York, 1969.Google Scholar
  25. 25).
    Chesterman, W.D., The Photographic Study of Rapid Events, Clarendon Press, Oxford (1951).Google Scholar
  26. 26).
    Jones, G.A., High Speed Photography, Chapman and Ha London, (1952).Google Scholar
  27. 27).
    Schardin, H., Ergebnisse der Kinematographischen Untersuchung des Glasbruchvorgänges, Glastech. Ber. 23, 1, (1950).Google Scholar
  28. 28).
    Cranz, C. and Schardin, H., Kinematographie auf ruhendem Film und mit extrem hoher Bildfrequenz, Z. Phys. 56, 147, (1929).CrossRefGoogle Scholar
  29. 29).
    Christie, D.G., A multiple spark camera for dynamic stress analysis. J. Phot. Sci., (1955).Google Scholar
  30. 30).
    Christie, D.G., Application of High Speed Photography to Dynamic Stress Analysis, Proc. 2nd Conf. High Speed Photography, Paris (1953).Google Scholar
  31. 31).
    Volterra, E., Alcaui Risultati di Prove Dinamiche sui Materiali, Nuovo. Cim. 4, 1 (1948).Google Scholar
  32. 32).
    Owens, J.D. and Davies, R.M., High speed recording by a rotating mirror. Nature 164, 752 (1949).CrossRefADSGoogle Scholar
  33. 33).
    Schardin, H., Die Schlierenverfahren and ihre Anwendungen, Ergeb. exakt. Naturw. 20, 303 (1947).Google Scholar
  34. 34).
    Frocht, M.M. and Flynn, P.D., Studies in dynamic photoelectricity. J. Appl. Mech. 23, 116 (1956)Google Scholar
  35. 35).
    Feder, J.C., Gibbons, R.A., Gilbert, J.J. and Offenbacher, E.L., The study of the propagation of stress waves by photoelasticity. P.S.E.S.A. 14, 109 (1956).Google Scholar
  36. 36).
    Tuzi, Z. and Nisida, M., Photoelastic study of stresses due to impact. Phil. Mag. 21, 448 (1936).Google Scholar
  37. 37).
    Durelli, A.J. and Riley, W.F., Experiments for the determination of transient stress and strain in two-dimensional problems. J. Appl. Mech. 24, 64 (1957).Google Scholar
  38. 38).
    Bell, J.F., Determination of dynamic plastic strain through the use of diffraction gratings. J. Appl. Phys. 27, 1109 (1956).CrossRefADSGoogle Scholar
  39. 39).
    Davies, R.M., A critical study of the Hopkinson pressure bar. Phil. Trans. Roy. Soc. 240A, 375 (1948).CrossRefMATHADSGoogle Scholar
  40. 40).
    Kolsky, H. and Shi, Y.X., Fractures produced by stress pulses in glass-like solids. Proc. Phys. Soc. 72, 447 (1958).CrossRefADSGoogle Scholar
  41. 41).
    Bordoni, P.G., Metodo Elettroacustico per Richerche Sperimentali Sulla Elasticata. Nuovo. Cim. 4, 177 (1947).CrossRefGoogle Scholar
  42. 42).
    Ramberg, W., and Irwin, L.K., A pulse method of determining dynamic stress-strain relations. Proc. 9th Int. Cong. Appl. Mech. 8, 480 (1957).Google Scholar
  43. 43).
    Ripperger, E.A. and Yeakley, L.M., Measurement of particle velocities associated with waves propagating in bars. Experimental Mechanics 3, 47 (1963).CrossRefGoogle Scholar
  44. 44).
    Efron, L. and Malvern, E., Electromagnetic velocity-transducer studies of plastic waves in aluminum bars. Experimental Mechanics, p. 255 (1969).Google Scholar
  45. 45).
    Hsieh, D.Y. and Kolsky, H., An experimental study of pulse propagation in elastic cylinders. Proc. Phys. Soc. 71 608 (1958).CrossRefADSGoogle Scholar
  46. 46).
    Heimann, J. and Kolsky, H., The propagation of elastic waves in thin cylindrical shells. J. Mech. Phys. Sol. 14, 121 (1966).CrossRefMATHADSGoogle Scholar
  47. 47).
    Lee, J.P. and Kolsky, H., The generation of stress pulses at the junction of two non-collinear rods. J. Appl. Mech. 39, 809 (1972).CrossRefADSGoogle Scholar
  48. 48).
    Ripperger, E.A. and Abramson, H.N., Reflection and transmission of elastic pulses in a bar at a discontinuity in cross-section. Proc. 3rd Midwest Conf. on Solid Mech., Univ. of Michigan, p. 135 (1957).Google Scholar
  49. 49).
    Bodner, S.R., Stress waves due to fracture of glass in bending. J. Mech. Phys. Sol. 21, 1 (1973).CrossRefADSGoogle Scholar
  50. 50).
    Kolsky, H., The stress pulses propagated as result of the rapid growth of brittle fractures. Eng. Fracture Mechanics, 5, 513 (1973).CrossRefGoogle Scholar
  51. 51).
    Oliver, J., Press, F., and Ewing, M., Two dimensional model seismology. Geophysics 19, 202 (1954).CrossRefADSGoogle Scholar
  52. 52).
    Sauter, F., Der Elastiche Halbraum bei einer mechanischen Beeinflussung seiner Oberfläche. Z. angew. Math. a Mech. 30, 203 (1950).MathSciNetCrossRefMATHGoogle Scholar
  53. 53).
    Roesler, F.C., Glancing angle reflection of elastic waves from a free boundary. Phil. Mag. 46, 317 (1955).MathSciNetGoogle Scholar
  54. 54).
    Boucher, S. and Kolsky, H., Reflection of pulses at the interface between an elastic rod and an elastic half-space. J. Acous. Soc., 52, 884 (1972).CrossRefMATHADSGoogle Scholar
  55. 55).
    Tsai, X.M. and Kolsky, H., A study of the fractures produced in glass blocks by impact. J. Mech. Phys. Sol. 15, p. 263 (1967).CrossRefADSGoogle Scholar
  56. 56).
    Hillier, K.W. and Kolsky, H., An investigation of the dynamic elastic properties of some high polymers. Proc. Phys. Soc. B 62, 111 (1949).CrossRefADSGoogle Scholar
  57. 57).
    Hillier, K.W., The measurement of some dynamic constants and its application to the study of high polymers. Proc. Phys. Soc. B 62, 701 (1949).CrossRefADSGoogle Scholar
  58. 58).
    Ballou, J.W. and Smith, J.C., Dynamic measurements of polymer physical properties. J. Appl. Phys. 20, 493, (1949).CrossRefADSGoogle Scholar
  59. 59).
    Kolsky, H., The propagation of stress pulses in viscoelastic solids. Phil. Mag., Ser. 8, 1, 693 (1956).CrossRefADSGoogle Scholar
  60. 60).
    Lifshitz, J.M. and Kolsky, H., The propagation of spherically divergent stress pulses in linear viscoelastic solids. J. Mech. Phys. Sol. 13, 361 (1965).CrossRefADSGoogle Scholar
  61. 61).
    Moffett, M.B., Experimental demonstration of a viscoelastic “crossover” effect. J. Acous. Soc., 53, 1749 (1973).CrossRefADSGoogle Scholar
  62. 62).
    Donnell, L.H., Longitudinal wave transmission and impact. Trans. Amer. Soc. Mech. Engrg. 52, 153 (1930).Google Scholar
  63. 63).
    von Karman, T. and Duwez, P., On the propagation of plastic deformation in solids. J. Appl. Phys. 21, 987 (1950).MathSciNetCrossRefMATHADSGoogle Scholar
  64. 64).
    Bell, J.F., Plastic propagation in rods subject to longitudinal impacts. Johns Hopkins Univ. Tech. Rept. No. 4, DA-36–034 ORD 1363 (1956).Google Scholar
  65. 65).
    Kolsky, H. and Douch, L.S., Experimental studies in plastic wave propagation. J. Mech. Phys. Sol. 11, 195 (1962).CrossRefADSGoogle Scholar
  66. 66).
    Duvall, G.E., Shock waves in the study of solids. Applied Mechanics Surveys, Spartan Books, Washington, p. 869 (1966).Google Scholar
  67. 67).
    Kolsky, H. and Rader, D., Stress waves and fracture, Chapter in Treatise on Fracture, vol. 1, 553, (1967).Google Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • H. Kolsky
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations