Skip to main content

Experimental Results of Stress Wave Investigations

  • Chapter
Mechanical Waves in Solids

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 222))

Abstract

Experimental work plays two distinct rôles in the study of stress wave propagation in solids. The first of these is to verify conclusions which have been reached as a result of the mathematical analysis of a dynamic elastic type of loading, or to find the wave pattern in situations where mathematically the problem is a perfectly well-posed one with well-defined initial or boundary conditions, but where the complexity of the mathematical analysis is such that it is impossible to obtain a solution in analytic form. In either of these situations the stress wave experiments are acting as analog computers solving known partial differential equations with well-defined boundary conditions. This type of experiment is a dynamic counterpart of the use of stress analysis techniques to the static elastic loading of engineering structures, where by the use of photoelastic models or of electrical strain gages on elastic models, the strains are measured under conditions of quasi-static loading. The geometry of these structures is generally too complicated to be treated analytically, and although the constitutive relations between the stress and strain tensors is well-established, (the material is assumed to obey Hooke’s Law), and the boundary conditions are perfectly well-defined, an analytic solution cannot in general be obtained, and experiments have to be carried out to determine the form of the elastic solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolsky, H., Stress Waves in Solids, Clarendon Press, Oxford, 1953 (Dover reprint, 1964 ).

    Google Scholar 

  2. Ewing, W.M., Jardetsky, W.S. and Press, F., Elastic Waves in Layered Media, McGraw-Hill, New York, 1957.

    Google Scholar 

  3. Rinehart, J.S. and Pearson, J., Behavior of Metals under Impulsive Loads, Amer. Soc. Metals, 1954(Dover reprint, 1965 ).

    Google Scholar 

  4. Goldsmith, W., Impact ( Edward Arnold: London, 1960 ).

    MATH  Google Scholar 

  5. Averbach, J.D., Wave Propagation in Elastic Solids, (North Holland, 1973 ).

    Google Scholar 

  6. Encyclopedia of Physics, Vol. VI Mechanics of Solids (Springer Verlag) The Experimental Foundations of Solid Mechanics, J.F. Bell (1973).

    Google Scholar 

  7. Abramson, H.N., Plass, H.J. and Ripperger, E.P., Stress wave propagation in rods and beams, Advances in Appl. Mech. 5, pp. 111 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  8. International Symposium on Stress Wave Propagation in Materials (ed. N. Davids), Interscience, New York (1960).

    Google Scholar 

  9. Stress Waves in Anelastic Solids Proceedings of IUTAM Symposium held at Brown University, 1963 (ed. H. Kolsky and W. Prager), Springer-Verlag, 1964.

    Google Scholar 

  10. Kolsky, H., Experimental Wave Propagation in Solids, Structural Mechanics (ed. J.N. Goodier and N.J. Hoff) Pergamon, New York, 1960.

    Google Scholar 

  11. Hunter, S.C., Energy absorbed by elastic waves during impact. J. Mech. and Phys. Solids 3, 162, 1954.

    Google Scholar 

  12. Hopkinson, B., A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets. Phil. Trans. Roy. Soc. 213A, p. 375, 1914.

    Google Scholar 

  13. Sears, J.E., Longitudinal impact of metal rods with rounded ends. Proc. Camb. Phil. Soc. 14, p. 237, (1907).

    Google Scholar 

  14. Phillips, J.W., Stress pulses produced during the fracture of brittle tensile specimens. Int. J. Sol. Struct. 6, p. 1403 (1970).

    Article  Google Scholar 

  15. Kolsky, H., Production of tensile shock waves in stretched natural rubber. Nature 224, p. 1301, (1969).

    Article  ADS  Google Scholar 

  16. Christie, D.G., An investigation of cracks and stress waves in glass and plastics by high-speed photography. J. Soc. Glass Tech. 36, p. 74 (1952).

    Google Scholar 

  17. Christie, D.G., Reflection of elastic waves from a free boundary. Phil. Mag. 46, p. 527 (1955).

    MathSciNet  Google Scholar 

  18. Curtis., Elastic strain-pulse in a semi-infinite bar. Stress Wave Propagation in Materials, p. 15, Interscience, 1960.

    Google Scholar 

  19. Kolsky, H., Electromagnetic waves emitted on detonation of explosives. Nature 173, p. 77 (1959).

    Article  ADS  Google Scholar 

  20. Bergmann., L., Der Ultraschall: Hirzel, Stuttgart (1920).

    Google Scholar 

  21. Richardson, E.G., Ultrasonic Physics: Elsevier, Amsterdam, 1957.

    Google Scholar 

  22. Mason, W.P., Piezoelectric Crystals and their Applications in Ultrasonics: Van Nostrand, New York, 1950.

    Google Scholar 

  23. Hueter, T.F., and Bolt, R.H., Sonics, John Wiley, New York, 1955.

    Google Scholar 

  24. Truell, R., Elbaum, C. and Chick, B., Ultrasonic Methods in Solid State Physics, Academic Press, New York, 1969.

    Google Scholar 

  25. Chesterman, W.D., The Photographic Study of Rapid Events, Clarendon Press, Oxford (1951).

    Google Scholar 

  26. Jones, G.A., High Speed Photography, Chapman and Ha London, (1952).

    Google Scholar 

  27. Schardin, H., Ergebnisse der Kinematographischen Untersuchung des Glasbruchvorgänges, Glastech. Ber. 23, 1, (1950).

    Google Scholar 

  28. Cranz, C. and Schardin, H., Kinematographie auf ruhendem Film und mit extrem hoher Bildfrequenz, Z. Phys. 56, 147, (1929).

    Article  Google Scholar 

  29. Christie, D.G., A multiple spark camera for dynamic stress analysis. J. Phot. Sci., (1955).

    Google Scholar 

  30. Christie, D.G., Application of High Speed Photography to Dynamic Stress Analysis, Proc. 2nd Conf. High Speed Photography, Paris (1953).

    Google Scholar 

  31. Volterra, E., Alcaui Risultati di Prove Dinamiche sui Materiali, Nuovo. Cim. 4, 1 (1948).

    Google Scholar 

  32. Owens, J.D. and Davies, R.M., High speed recording by a rotating mirror. Nature 164, 752 (1949).

    Article  ADS  Google Scholar 

  33. Schardin, H., Die Schlierenverfahren and ihre Anwendungen, Ergeb. exakt. Naturw. 20, 303 (1947).

    Google Scholar 

  34. Frocht, M.M. and Flynn, P.D., Studies in dynamic photoelectricity. J. Appl. Mech. 23, 116 (1956)

    Google Scholar 

  35. Feder, J.C., Gibbons, R.A., Gilbert, J.J. and Offenbacher, E.L., The study of the propagation of stress waves by photoelasticity. P.S.E.S.A. 14, 109 (1956).

    Google Scholar 

  36. Tuzi, Z. and Nisida, M., Photoelastic study of stresses due to impact. Phil. Mag. 21, 448 (1936).

    Google Scholar 

  37. Durelli, A.J. and Riley, W.F., Experiments for the determination of transient stress and strain in two-dimensional problems. J. Appl. Mech. 24, 64 (1957).

    Google Scholar 

  38. Bell, J.F., Determination of dynamic plastic strain through the use of diffraction gratings. J. Appl. Phys. 27, 1109 (1956).

    Article  ADS  Google Scholar 

  39. Davies, R.M., A critical study of the Hopkinson pressure bar. Phil. Trans. Roy. Soc. 240A, 375 (1948).

    Article  MATH  ADS  Google Scholar 

  40. Kolsky, H. and Shi, Y.X., Fractures produced by stress pulses in glass-like solids. Proc. Phys. Soc. 72, 447 (1958).

    Article  ADS  Google Scholar 

  41. Bordoni, P.G., Metodo Elettroacustico per Richerche Sperimentali Sulla Elasticata. Nuovo. Cim. 4, 177 (1947).

    Article  Google Scholar 

  42. Ramberg, W., and Irwin, L.K., A pulse method of determining dynamic stress-strain relations. Proc. 9th Int. Cong. Appl. Mech. 8, 480 (1957).

    Google Scholar 

  43. Ripperger, E.A. and Yeakley, L.M., Measurement of particle velocities associated with waves propagating in bars. Experimental Mechanics 3, 47 (1963).

    Article  Google Scholar 

  44. Efron, L. and Malvern, E., Electromagnetic velocity-transducer studies of plastic waves in aluminum bars. Experimental Mechanics, p. 255 (1969).

    Google Scholar 

  45. Hsieh, D.Y. and Kolsky, H., An experimental study of pulse propagation in elastic cylinders. Proc. Phys. Soc. 71 608 (1958).

    Article  ADS  Google Scholar 

  46. Heimann, J. and Kolsky, H., The propagation of elastic waves in thin cylindrical shells. J. Mech. Phys. Sol. 14, 121 (1966).

    Article  MATH  ADS  Google Scholar 

  47. Lee, J.P. and Kolsky, H., The generation of stress pulses at the junction of two non-collinear rods. J. Appl. Mech. 39, 809 (1972).

    Article  ADS  Google Scholar 

  48. Ripperger, E.A. and Abramson, H.N., Reflection and transmission of elastic pulses in a bar at a discontinuity in cross-section. Proc. 3rd Midwest Conf. on Solid Mech., Univ. of Michigan, p. 135 (1957).

    Google Scholar 

  49. Bodner, S.R., Stress waves due to fracture of glass in bending. J. Mech. Phys. Sol. 21, 1 (1973).

    Article  ADS  Google Scholar 

  50. Kolsky, H., The stress pulses propagated as result of the rapid growth of brittle fractures. Eng. Fracture Mechanics, 5, 513 (1973).

    Article  Google Scholar 

  51. Oliver, J., Press, F., and Ewing, M., Two dimensional model seismology. Geophysics 19, 202 (1954).

    Article  ADS  Google Scholar 

  52. Sauter, F., Der Elastiche Halbraum bei einer mechanischen Beeinflussung seiner Oberfläche. Z. angew. Math. a Mech. 30, 203 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  53. Roesler, F.C., Glancing angle reflection of elastic waves from a free boundary. Phil. Mag. 46, 317 (1955).

    MathSciNet  Google Scholar 

  54. Boucher, S. and Kolsky, H., Reflection of pulses at the interface between an elastic rod and an elastic half-space. J. Acous. Soc., 52, 884 (1972).

    Article  MATH  ADS  Google Scholar 

  55. Tsai, X.M. and Kolsky, H., A study of the fractures produced in glass blocks by impact. J. Mech. Phys. Sol. 15, p. 263 (1967).

    Article  ADS  Google Scholar 

  56. Hillier, K.W. and Kolsky, H., An investigation of the dynamic elastic properties of some high polymers. Proc. Phys. Soc. B 62, 111 (1949).

    Article  ADS  Google Scholar 

  57. Hillier, K.W., The measurement of some dynamic constants and its application to the study of high polymers. Proc. Phys. Soc. B 62, 701 (1949).

    Article  ADS  Google Scholar 

  58. Ballou, J.W. and Smith, J.C., Dynamic measurements of polymer physical properties. J. Appl. Phys. 20, 493, (1949).

    Article  ADS  Google Scholar 

  59. Kolsky, H., The propagation of stress pulses in viscoelastic solids. Phil. Mag., Ser. 8, 1, 693 (1956).

    Article  ADS  Google Scholar 

  60. Lifshitz, J.M. and Kolsky, H., The propagation of spherically divergent stress pulses in linear viscoelastic solids. J. Mech. Phys. Sol. 13, 361 (1965).

    Article  ADS  Google Scholar 

  61. Moffett, M.B., Experimental demonstration of a viscoelastic “crossover” effect. J. Acous. Soc., 53, 1749 (1973).

    Article  ADS  Google Scholar 

  62. Donnell, L.H., Longitudinal wave transmission and impact. Trans. Amer. Soc. Mech. Engrg. 52, 153 (1930).

    Google Scholar 

  63. von Karman, T. and Duwez, P., On the propagation of plastic deformation in solids. J. Appl. Phys. 21, 987 (1950).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  64. Bell, J.F., Plastic propagation in rods subject to longitudinal impacts. Johns Hopkins Univ. Tech. Rept. No. 4, DA-36–034 ORD 1363 (1956).

    Google Scholar 

  65. Kolsky, H. and Douch, L.S., Experimental studies in plastic wave propagation. J. Mech. Phys. Sol. 11, 195 (1962).

    Article  ADS  Google Scholar 

  66. Duvall, G.E., Shock waves in the study of solids. Applied Mechanics Surveys, Spartan Books, Washington, p. 869 (1966).

    Google Scholar 

  67. Kolsky, H. and Rader, D., Stress waves and fracture, Chapter in Treatise on Fracture, vol. 1, 553, (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Wien

About this chapter

Cite this chapter

Kolsky, H. (1975). Experimental Results of Stress Wave Investigations. In: Mandel, J., Brun, L. (eds) Mechanical Waves in Solids. International Centre for Mechanical Sciences, vol 222. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2728-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2728-5_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81398-0

  • Online ISBN: 978-3-7091-2728-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics