Ordinary Waves in Inviscid Plastic Media

  • Bogdan Raniecki
Part of the International Centre for Mechanical Sciences book series (CISM, volume 222)


The lectures are devoted to the comprehensive analysis of ordinary waves of infinitesimal strains in unbounded, rate-independent elastic-plastic conductors and non-conductors, including simple waves. To provide the example of simple waves, the one-dimensional adiabatic waves of combined stress in a thin-walled tube are discussed and the results of numerical solutions are presented.


Slow Wave Wave Speed Flow Rule Combine Stress Fast Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Thomas, T.Y: “On the characteristic surfaces of thé von Mises plasticity equations”, J. Rational Mech. and Anal., 1, 1952, p. 355.Google Scholar
  2. [2]
    Thomas, T.Y.: “Plastic flow and fracture in solids”, Academic Press, N.Y. 1961.MATHGoogle Scholar
  3. [3]
    Mandel, J.: “Ondes plastiques dans un milieu indéfini â trois dimensions”, Journal de Mécanique, Vol. 1 No 1, 1962, p. 3–30.MathSciNetGoogle Scholar
  4. [4]
    Hill, R.: “Acceleration waves in solids”, J. Mech. Phys. of Solids, Vol. 10, No. 1, 1962, p. 1–16.CrossRefMATHADSGoogle Scholar
  5. [5]
    Mandel, J.: “Thermodynamique et ondes dans les milieuxviscoplastiques”, J. Mech. Phys. of Solids, Vol. 17, 1969, pp. 125–140.MathSciNetCrossRefMATHADSGoogle Scholar
  6. [6]
    Mroz, Z., Raniecki B.: “On the uniqueness problem in coupled thermoplasticity”, Int. J. Engn. Sci., Vol. 13, 1975 (in print).Google Scholar
  7. [7]
    Prager, W.: “Non-isothermal plastic deformation” K.Nederl. Ak. Wetensch., Proc., Vol LXI, ser. B., 1958, p. 176–192.Google Scholar
  8. [8]
    Nguyen Quoc Son: “Contribution â la théorie macroscopique de l’élastoplasticité avec ecrouissage” These de doctorat d’état es - sciences physiques, a l’Université de Paris V I, 1973.Google Scholar
  9. [9]
    Mroz, Z., Raniecki, B.: “A note on variational principles in coupled thermoplasticity”, Bull. Pol. Acad. Sci, Ser. des Sc. Techn., Vol. XXIII, No 3, 1975.Google Scholar
  10. [10]
    Piau, M.: “Ondes d’accélération dans les milieux elastoplastiques viscoplastiques”, Journ. de Mécanique, Vol. 14, No 1, 1975, pp. 1–38.MathSciNetMATHGoogle Scholar
  11. [11]
    Kestin, J., Rice, J.R.: “Paradoxes in the application of thermodynamics to strained solids–A critical Rev. of Thermodynamics”, Mono Book Corp., USA, 1970, pp. 275–298.Google Scholar
  12. [12]
    Raniecki, B.: “The influence of dynamical thermal expansion on the propagation of plane elastic-plastic stress waves”, Quart. Appl. Math., July 1971, pp. 277–290.Google Scholar
  13. [13]
    Rakhmatulin, K. A.: “On the propagation of elastic-plastic waves owing to combined loading”, A.pl. Math. Mech. PMM, Vol. 22, 1958, pp. 1079–1088.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    Cristescu, N.: “On propagation of elastic-plastic waves for combined stresses”, Appl. Math. Mech. PMM, Vol. 23, 1959, pp. 1605–1612.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    Bleich, H. H., Nelson, I.: “Plane waves in an elastic-plastic half space due to combined surface pressure and shear” J. Appl.Mech., Vol. 33, 1966, pp. 149–158.MathSciNetCrossRefMATHADSGoogle Scholar
  16. [16]
    Fukuoka, H.: “Infinitesimal plane waves in elastic-plastic tubes under combined tension-torsion loads”, Proc. of Sixteenth Japan Nat. Congr.Appl. Mech., 1966, pp. 110–133.Google Scholar
  17. [17]
    Clifton, R.J.: “An analysis of combined longitudinal and torsional plastic waves in a thin-walled tube”, Fifth U.S. Nat. Congr. of Appl.Mech., Proceedings ASME, N.Y. 1966, pp. 465–480.Google Scholar
  18. [18]
    Cristescu, N.: “Dynamic plasticity”, J. Wiley & Sons Inc. N.Y. 1968.Google Scholar
  19. [19]
    Nowacki, W.K.: “Wave problems in the theory of plasticity”, P. W.N., Warsaw 1974, in Polish.Google Scholar
  20. [20]
    Herrman, W.: “Nonlinear stress waves in metals” in Wave Propagation in Solids, ASME, 1969, pp. 129–183.Google Scholar
  21. [21]
    Lee; E.H.: “Some recently developed aspects of plastic wave analysis” in Wave Propagation in Solids, ASME, 1969, pp. 115–128.Google Scholar
  22. [22]
    Ting, T.G.: “A unified theory of elastic-plastic wave propagation of combined stress”, Proc. Symp. Foundation of Plasticity“, Ed. A. Swaczuk, Noordhoff Int. Publish., Leiden 1973, pp. 301–316.Google Scholar
  23. [23]
    Manjoine, M.J.: “Influence of rate of strain and temperature on yield stresses of mild steel”, J.Appl. Mech., Vol. 11, 1944, pp. 211–218.Google Scholar
  24. [24]
    Litonski, J.: “The study of plastic torsion instabilities using thermomechanical coupling; local instability” (yet unpublished).Google Scholar
  25. [25]
    Podolak, K., Raniecki, B.:“ The influence of energy dissipation on the propagation of elastic-plastic waves” (yet unpublished).Google Scholar

Copyright information

© Springer-Verlag Wien 1975

Authors and Affiliations

  • Bogdan Raniecki
    • 1
  1. 1.Institute of FundamentalTechnological ResearchWarsawPoland

Personalised recommendations