Non-Linear Random Vibrations

  • Heinz Parkus
Part of the International Centre for Mechanical Sciences book series (CISM, volume 9)


Exact solutions are, in general, not available. For finding approximate solutions the same methods as in the deterministic case are being used. We discuss some examples.


Linear Differential Equation Deterministic Case Equivalent Linearization Random Vibration Solution Perturbation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [l]
    T.K. Caughey: Derivation and application of the Fokker-Planck equation. J. Acoust.Soc.America 35 (1963), 1683.CrossRefMathSciNetGoogle Scholar
  2. [2]
    S.H. Crandall: Perturbation techniques for ran dom vibration of nonlinear systems. J. Acoust. Soc. America 35 (1963), 1700.CrossRefMathSciNetGoogle Scholar
  3. [3]
    S.H. Crandall (editor): Random Vibrations. Vol.2 p.97, M.I.T. Press 1963.Google Scholar
  4. [4]
    T.K. Caughey: Equivalent linearization techniques. J. Acoust. Soc. America 35 (1963), 1706.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Wien 1969

Authors and Affiliations

  • Heinz Parkus
    • 1
  1. 1.Technical University of ViennaAustria

Personalised recommendations