General Theorems of Linear Micropolar Elasticity

  • Witold Nowacki
Part of the International Centre for Mechanical Sciences book series (CISM, volume 25)


The classical theory of elasticity is based on an ideal model of an elastic, continuous medium in which the loadings are transmitted through an area element αA in the body by means of the stress vector only.


Constitutive Equation Body Force Couple Stress Stress Function Virtual Work 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. +).
    Voigt, W.: Theoretische Studien liber die Elastizitätsverhfflt nisse der Kristalle. Abh. Ges. Wiss. Göttingen, 34 (1887)Google Scholar
  2. ++).
    Cosserat, E., and F. Cosserat: Théorie des corps déformables. A. Hermann, Paris, 1909.Google Scholar
  3. +).
    Truesdell, C., and R.A. Toupin: The classical field theories. Encyclopedia of Physics, 3, No 1, Springer Verlag, Berlin, 1960.Google Scholar
  4. ++).
    Grioli, G.: Elasticità asimmetrica. Ann. di Mat. pura ed appl. Ser. IV. 50, (1960).Google Scholar
  5. +++).
    Mindlin, R.D. and H.F. Tiersten: Effects of couple-stresses in linear elasticity. Arch. Mech. Analysis, 11, (1962), 385.CrossRefMathSciNetGoogle Scholar
  6. +).
    Toupin, R.A.: Theories of elasticity with couple-stresses. Arch. Mech. Analysis. 17, (1964), 85.MATHMathSciNetGoogle Scholar
  7. ++).
    Eringen, A.C., and E.S. Suhubi: Non linear theory of micro elastic solids. Int. J. Eng. Sci. 2 (1964), 189, 389.MathSciNetGoogle Scholar
  8. +).
    Gilnther, W.: Zur Statik und Kinematik des Cosseratschen Kon tinuum. Abh. Braunschweig. Wiss. Ges 10, (1958), 85.Google Scholar
  9. ++).
    Schaefer, H.: Versuch einer Elastizitätstheorie des zweidi mensionalen Cosserat-Kontinuum, Misz. Angew. Math. Festschrift Tollmien, Berlin, 1962, Akademie Verlag.Google Scholar
  10. +++).
    Kuvshinskii, E.V., and A.L. Aero: Continuum theory of asym metric elasticity, (in Russian). Fizika Tverdogo Tela 5, (1963), 2592.Google Scholar
  11. +).
    Palmov, N.A.: Fundamental equations of the theory of asymmetric elasticity (in Russian). Prikl. Mat. Mekh. 28 (1964), 401.MathSciNetGoogle Scholar
  12. ++).
    Nowacki W.: Couple-stresses in the theory of thermoelasticity. Proc. of the IUTAM symposia, Vienna, June 22–28 1966. Springer Verlag, Wien, 1968.Google Scholar
  13. +).
    Schaefer, H.: Das Cosserat-Kontinuum. Z.A.M.M. 47 (1967), 485MATHGoogle Scholar
  14. +).
    Kaliski, S.: On a model of the continuum with an essentially non-symmetric tensor of mechanical stress. Arch. Mech. Stos. 15, 1 (1963), 33.MATHMathSciNetGoogle Scholar
  15. ++).
    Askar, A. and A.S. Cakmak: A structural model of a micro-polar continuum. Int. J. Eng. Sci. 6, 10 (1968), 583.CrossRefMATHGoogle Scholar
  16. +).
    The considerations presented here are more extensively treated (in connection with the classical elastic continuum) by this author in the monograph “Dynamical Problems of Thermoelasticity” (in Polish) Warsaw, PWN. 1968.Google Scholar
  17. +).
    W. Nowacki: “Couple-stresses in the theory of thermoelasticity”, Proc. of the IUTAM-Symposium on Irreversible Aspects in Con tinuum Mechanics, Vienna,1966, Springer Verlag,Wien-New York,1968Google Scholar
  18. +).
    Lamé G.: Leçons sur la théorie mathématique de l’élasticité des corps solides. Paris, Bachelier, 1852.Google Scholar
  19. ++).
    Palmov W.A.: Fundamental equations of non-symmetric elastici ty (in Russian), Prikl.Mat.Mech. 28 (1964), p. 401.MathSciNetGoogle Scholar
  20. +).
    Galerkin, B.: “Contributions à la solution générale du problème de la théorie de l’élasticité dans le cas de trois dimension”, C.R.Acad. Sci. Paris, 190 (1930), p. 1047.MATHGoogle Scholar
  21. ++).
    Iacovache, M.: “O extindere a metodei lui Galerkin pentru sistemul ecuatiilor elasticitâii”, Bull. Stiint. Acad. Rep. Pop. Romane, Ser. A. 1 (1949), 593.MathSciNetGoogle Scholar
  22. +++).
    Sandru, N.: “On some problems of the linear theory of asym metric elasticity” Int. J. Engng. Sci. 4, 1, (1966), 81.CrossRefGoogle Scholar
  23. +).
    Moisil, Gr. C.: “Aspura sistemelor de equaii cu derivata partiale lineare si cu coeficien i constanti”. Bull.§tiint.Acad. Rep. Pop. Romane, Ser. A., (1949), p. 341.Google Scholar
  24. ++).
    Nowacki, W.: “On the completeness of stress functions in asymmetric elasticity”, Bull. Acad. Polon. Sci., Sér. Sci. Techn. 14, No 7 (1968), p. 309.Google Scholar
  25. +).
    N. Sandru, op. cit. p.53.Google Scholar
  26. ++).
    Stefaniak, J.:“A generalization of Galerkin’s functions for asymmetric thermoelasticity”, Bull.Acad. Polon.Sci., Série Sci. Tech., 8, 14, (1968), p. 391.Google Scholar
  27. +++).
    Boggio, T.:“Sull’integrazione di alcune equazioni lineari alle derivate parziali”, Ann. Mat., Ser. III (1903), 181.Google Scholar

Copyright information

© Springer-Verlag Wien 1970

Authors and Affiliations

  • Witold Nowacki
    • 1
  1. 1.University of WarsawPoland

Personalised recommendations