Advertisement

Theory of Crystal Defects and Their Impact on Material Behaviour

  • E. Kröner
Part of the International Centre for Mechanical Sciences book series (CISM, volume 331)

Abstract

The present course of seven lectures is thought as an introduction into the theory of defects in crystal lattices. This topic was treated by Seeger already in 1955 and 1958 in two Handbuch-articles of together about 500 pages. Meanwhile there exist many textbooks and monographs in this field of which I mention those of Read, Cottrell, Friedel, Nabarro, Hirth and Lothe, Hull, Nadgorny, and Weertman. There are many more extended reviews of our field. It should then be clear that in a course as restricted as ours only a few limited topics can be selected. Some of these were taken because they represent the fundamental theory of lattice defects. Others are used for illustration and to show how solid state physicists and material scientists use to think about the present field.

Keywords

Burger Vector Screw Dislocation Crystal Defect Lattice Orientation Dislocation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beltrami, E. Osservazioni sulla nota precedente (Morera), Atti Accad. Naz. Lincei, Rend., Cl. Sci. Fiz. Mat. Natur. V. Ser., 1 /1 (1892), 141–142.MathSciNetMATHGoogle Scholar
  2. Bilby, B.A., Bullough, R., and Smith, E. Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry, Proc. Roy. Soc. London, Ser. A, 231 (1955), 263–273.MathSciNetADSCrossRefGoogle Scholar
  3. Burgers, J.M. Some considerations of the field of stress connected with dislocations in a regular crystal lattice, Proc. Kon. Nederl. Akad. Wetensch., 42 (1939), 293–325.Google Scholar
  4. Burgers, J.M. Some considerations of the field of stress connected with dislocations in a regular crystal lattice, Proc. Kon. Nederl. Akad. Wetensch., 42 (1939), 378–399.MATHGoogle Scholar
  5. Cartan, E.: Leçons sur la géometrie des espaces de Riemann, Paris, Gauthier-Villars 1928.MATHGoogle Scholar
  6. Cottrell, A.H. Scaling laws and structural inhomogenities in solids, South Afr. J. Phys. 9 (1986) 44–47.Google Scholar
  7. Dehlinger, U. Zur Theorie der Rekristallisation reiner Metalle, Ann. Phys. V. Folge 2 (1929), 749–793.ADSCrossRefGoogle Scholar
  8. DeWit, R. Theory of Disclinations II, III, IV, J. Res. Nat. Bur. Stand., A, 77, (1973) 49–100.CrossRefGoogle Scholar
  9. DeWit, R. Theory of Disclinations II, III, IV, J. Res. Nat. Bur. Stand., A, 77, (1973) 359–368.CrossRefGoogle Scholar
  10. DeWit, R. Theory of Disclinations II, III, IV, J. Res. Nat. Bur. Stand., A, 77, (1973) 607–658.CrossRefGoogle Scholar
  11. Eshelby, J.D. Uniformly moving dislocations, Proc. Phys. Soc. Ser. A, 62 (1949), 307–314.ADSCrossRefGoogle Scholar
  12. Eshelby, J.D. The force on an elastic singularity, Philos. Trans. Roy. Soc. London, Ser. A 244 (1951) 87–112.MathSciNetADSCrossRefMATHGoogle Scholar
  13. Frank, F.C. and Read, W.T. Multiplication processes for slow moving dislocations, Phys. Rev. II Ser. 79 (1950) 722–723.ADSCrossRefGoogle Scholar
  14. Frank, F.C. On the theory of liquid crystals, Discuss. Faraday Soc., 25 (1958), 19–28.CrossRefGoogle Scholar
  15. Friedel, J. Dislocations — an introduction, in: Dislocations in Solids, Vol. 1, F.R.N. Nabarro ed., Amsterdam, North-Holland 1979, pp. 1–32.Google Scholar
  16. Friedel, J.: Dislocations, London, Pergamon Press 1964.MATHGoogle Scholar
  17. Heidenreich, R.D. and Shockley, W. Study of slip in aluminum crystals by electron microscope and electron diffraction methods, in: Strength of Solids — Report of 1947 Bristol conference, London, The Physical Society 1948, pp. 57–74.Google Scholar
  18. Kléman, M.: Points, Lines and Walls, New York, J. Wiley 1983.Google Scholar
  19. Koehler, J.S. On the dislocation theory of plastic deformation, Phys. Rev. II. Ser. 60 (1941) 397–410.ADSCrossRefGoogle Scholar
  20. Kondo, K. On the geometrical and physical foundations of the theory of yielding, Proc. 2nd Japan Nat. Congr. of Appl. Mech. 1952, pp. 41–47.Google Scholar
  21. Kondo, K. Memoirs on the unifying study of the basic problems in engineering sciences by means of geometry, Vol. 1, Tokyo, Gakujutsu Bunken Fukyu-Kay 1955.Google Scholar
  22. Kosevich, A.M. Crystal dislocations and the theory of elasticity, in: Dislocations in Solids, Vol. 1, F.R.N. Nabarro ed., Amsterdam, North-Holland 1979, pp. 33–141.Google Scholar
  23. Kröner, E. Kontinuumstheorie der Versetzungen and Eigenspannungen, Erg. Angew. Math. 5 (1958), 1–179.Google Scholar
  24. Kröner, E. Initial studies of a plasticity theory based upon statistical mechanics, in: Inelastic Behaviour of Solids, M.F. Kanninen et al. eds., New York, McGraw Hill 1970, pp. 137–148.Google Scholar
  25. Kröner, E. Continuum theory of defects, in: Les Houches, Session 35, 1980 — Physics of Defects, R. Balian et al. eds., Amsterdam, North-Holland 1981, pp. 215–315.Google Scholar
  26. Kröner, E. The continuized crystal — a bridge between micro-and macromechanics?, Z. Angew. Math. Mech. 66 (1986), T284 - T292.Google Scholar
  27. Kröner, E. Stress space and strain space in continuum mechanics, Phys. Stat. Sol. (b), 144 (1987), 39–44.CrossRefGoogle Scholar
  28. Kröner, E. The differential geometry of elementary point and line defects in Bravais crystals, Int. J. Theor. Phys. 29 (1990), 1219–1237.CrossRefMATHGoogle Scholar
  29. Kröner, E. Threedimensional stress functions in anisotropic elasticity, Rend. di Mat., Serie VII, 10 (1990), 773–784.Google Scholar
  30. Kröner, E. The continuized crystal as a model for crystals with dislocations, Proc. Symp. on Materials Modelling: From Theory to Technology, J.R. Matthews ed., Oxford 1991, in the press.Google Scholar
  31. Lagoudas, D. A gauge theory of defects in media with microstructure, Int. J. Engng. Sci., 27 (1989), 237–249.CrossRefMATHGoogle Scholar
  32. Leibfried, G. and Lücke, K. Über das Spannungsfeld einer Versetzung, Z. Physik 126 (1949) 450–464.MathSciNetADSCrossRefMATHGoogle Scholar
  33. Leibfried, G. and Dietze, H.-D. Versetzungen in kubisch flächenzentrierten Kristallen, Z. Physik 131 (1951) 113–129.MathSciNetADSCrossRefGoogle Scholar
  34. Livingston, J.D. Positive and negative dislocations in copper, in: Direct Observation of Imperfections in Crystals, J.B. Newkirk and J.H. Wernick eds., New York, Interscience 1962, pp. 115–133.Google Scholar
  35. Love, A.E.H. A treatise on the mathematical theory of elasticity, 2nd ed., Cambridge, Univ. Press 1920.MATHGoogle Scholar
  36. Nabarro, F.R.N. Dislocations in a simple cubic lattice, Proc. Phys. Soc. 59 (1947), 256–272.ADSCrossRefGoogle Scholar
  37. Nabarro, F.R.N.: Theory of Crystal Dislocations, Amsterdam, North-Holland 1967.Google Scholar
  38. Nabarro, F.R.N. Scaling laws and structural inhomogeneities in solids, J. Phys. France 50 (1989) 2519–2523.CrossRefGoogle Scholar
  39. Noll, W. Materially uniform simple bodies with inhomogeneities, Arch. Rat. Mech. Anal., 27 (1968), 1–32.MathSciNetCrossRefMATHGoogle Scholar
  40. Nye, J.F. Some geometrical relations in dislocated crystals, Acta Metallurgica 1 (1953), 153–162.CrossRefGoogle Scholar
  41. Orowan, E. Zur Kristallplastizität, Z. Phys., 89 (1934), 605–659.ADSCrossRefGoogle Scholar
  42. Peach, M.O. and Koehler, J.S. The forces exerted on dislocations and the stress field produced by them, Phys. Rev. II Ser. 80 (1950) 436–439.MathSciNetADSCrossRefMATHGoogle Scholar
  43. Peierls, R.E. The size of a dislocation, Proc. Phys. Soc. London, 52 (1940) 34–37.ADSCrossRefGoogle Scholar
  44. Polanyi, M. Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte, Z. Phys., 89 (1934), 660–664.ADSCrossRefGoogle Scholar
  45. Reissner, H. Eigenspannungen und Eigenspannungsquellen, Z. Angew. Math. Mech. 11 (1931), 1–8.CrossRefGoogle Scholar
  46. Rice, J.R. A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech. 35 (1968) 379–386.ADSCrossRefGoogle Scholar
  47. Schouten, J.A.: Ricci-Calculus, Heidelberg, Springer 1954.CrossRefMATHGoogle Scholar
  48. Seeger, A. Versetzungen und allotrope Umwandlungen, Z. Metallkunde 44 (1953), 247–253.Google Scholar
  49. Seeger, A.: Zur Gittertheorie der Versetzungen, Dr. rer. nat. Dissertation, T.H. Stuttgart, Stuttgart 1951.Google Scholar
  50. Seeger, A. Theorie der Gitterfehlstellen, in: Handbuch der Physik, VII/1, 383–665, Heidelberg, Springer 1955.Google Scholar
  51. Seeger, A. Kristallplastizität, in: Handbuch der Physik, VII/2, 1–192, Heidelberg, Springer 1958.Google Scholar
  52. Smekal, A. Strukturemjfindliche Eigenschaften der Kristalle, Handbuch der Physik, 2. Aufl. Bd. 24/2, Berlin, Springer 1933, pp. 795–922.Google Scholar
  53. Somigliana, C. Sulla teoria delle distorsioni elastiche, Atti Accad. Naz. Lincei, Rend., Cl. Sci. Fis. Mat. Natur., V. Ser., 23 /1 (1914) 463–472MATHGoogle Scholar
  54. Somigliana, C. Sulla teoria delle distorsioni elastiche, Atti Accad. Naz. Lincei, Rend., Cl. Sci. Fis. Mat. Natur., V. Ser., 24 /1 (1915), 655–666.MATHGoogle Scholar
  55. Taylor, G.I. The mechanism of plastic deformation of crystals, Proc. Roy. Soc. London, Ser. A, 145 (1934), 362–415.ADSCrossRefMATHGoogle Scholar
  56. Volterra, V. L’Equilibre des corps élastiques multiplement connexes, Ann. Sci. Ecole Norm. Sup., III. Ser., 24 (1907), 401–517.MathSciNetMATHGoogle Scholar
  57. Weingarten, J. Sulla superficie di discontinuità nella teoria della elasticità dei corpi solidi, Atti Accad. Naz. Lincei, Rend., Cl. Sci. Fis. Mat. Natur. V. Ser., 10 /1 (1901), 163–166.MathSciNetGoogle Scholar

Bibliography

  1. Cottrell, A.H.: Dislocations and Plastic Flow in Crystals, Oxford, Clarendon Press 1953.MATHGoogle Scholar
  2. Friedel, J.: Dislocations, London, Pergamon Press 1964.MATHGoogle Scholar
  3. Hirth, J.P. and Lothe, J.: Theory of Dislocations, McGraw Hill, New York 1968.Google Scholar
  4. Hull, D.: Introduction to Dislocations, 3rd ed., Oxford, Pergamon Press 1990.Google Scholar
  5. Nabarro, F.R.N.: Theory of Crystal Dislocations, Amsterdam, North-Holland 1967.Google Scholar
  6. Nadgorny, E.M.: Dislocation Dynamics and Mechanical Properties of Crystals, Oxford, Pergamon Press 1988.Google Scholar
  7. Read, W.T.: Dislocations in Crystals, New York, McGraw Hill 1953.MATHGoogle Scholar
  8. Romanov, A.S. and Vladimirov, V.I.: Disclinations in Crystalline Solids, in: Dislocations in Crystals,F.R.N. Nabarro ed., vol. 9, 1992, in press. Russian Edition (Nauka, Leningrad 1986), A.N. Orlov, ed.Google Scholar
  9. Weertman, J. and Weertman, J.R.: Elementary Dislocation Theory, New York, MacMillan 1964.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • E. Kröner
    • 1
  1. 1.University of StuttgartStuttgartGermany

Personalised recommendations