Recent Developments in the Analysis of Gravity and Centrifugal Separation of Non-Colloidal Suspensions and Unfolding Challenges in the Classic Mechanics of Fluids

  • M. Ungarish
Part of the International Centre for Mechanical Sciences book series (CISM, volume 370)


This lecture considers the methodology used in the analysis of suspensions that separate under the action of a. gravity or a centrifugal field. First some typical results are reviewed, next some new challenging questions (and some answers) that appear in this context in the realm of the classic single-phase fluid theory are discussed. The objective is to increase the audience’s apprehansion of these problems and to motivate enhancement of the pertinent research and applications.


Ekman Layer Taylor Number Centrifugal Separation Coriolis Effect Gravity Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ungarish, M.: Hydrodynamics of Suspensions: Fundamentals of Centrifugal and Gravity Separation. Springer-Verlag, Berlin 1993.CrossRefGoogle Scholar
  2. 2.
    Greenspan, P.: The theory of rotating fluids. Cambridge U. Press, Cambridge 1968.Google Scholar
  3. 3.
    Herron, I.S., Davis, H. & Bretherton, F.P.: On sedimentation of a sphere in a centrifuge, J. Fluid Mech., 62 (1975), 209–234.ADSCrossRefGoogle Scholar
  4. 4.
    Childress, S.: The slow motion of a sphere in a rotating viscous fluid, J. Fluid. Mech., 20 (1964), 305–314.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Stewartson, K.: On the slow motion of an ellipsoid in a rotating fluid, Quart, J. Mech. Appl. Math. 6 (1953), 141–162.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Schaflinger, U., Köppl, A. k Filipczak, G.: Sedimentation in cylindrical centrifuges with compartments, Ing. Arch., 56 (1986), 321–331.Google Scholar
  7. 7.
    Dahlkild, A. A. & Greenspan, II. P.: On the flow of a rotating mixture in a sectioned cylinder, J. Fluid Mech., 198 (1989), 155–175.Google Scholar
  8. 8.
    Ungarish, M. & Greenspan, 11. P.: On centrifugal separation of particles of two different sizes, Int. J. Multiphase Flow, 10 (1984), 133–148.CrossRefMATHGoogle Scholar
  9. 9.
    Ungarish, M.: On the modeling and investigation of polydispersed rotating suspensions, Int. J. Multiphase Flow, 21 (1995), 262–284.Google Scholar
  10. 10.
    Moore, D.W. & Saffman, P.C.: The structure of free vertical shear layers in a. rotating fluid and the motion produced by a, slowly rising body, Trans. Roy. Soc. Lond. A 264 (1969), 597–634.ADSCrossRefMATHGoogle Scholar
  11. 11.
    Maxworthy, T.: The observed motion of a. sphere through a short, rotating cylinder of fluid, J. Fluid Mech. 31 (1968), 643–655.ADSCrossRefGoogle Scholar
  12. 12.
    Maxworthy, T.: The flow created by a sphere moving along the axis of a rotating, slightly-viscous fluid,.1. Fluid Mech. 40 (1970), 453–179.ADSCrossRefMATHGoogle Scholar
  13. 13.
    Karanfilian, S. K. & Rotas, T. J.: Motion of a spherical particle in a liquid rotating as a solid body, Proc. It. Soc. Loud. A, 376 (1981), 525–544.ADSCrossRefGoogle Scholar
  14. 14.
    Vedensky, D k Unga.rish, M.: The motion generated by a slowly rising disk in an unbounded rotating fluid for arbitrary Taylor number, J. Fluid Mech., 262 (1994), 1–26.MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    Tanzosh, J. P. & Stone, II. A.: Motion of a rigid particle in a rotating viscous flow: An integral equation approach, J. Fluid. Mech., 275 (1994), 225–256.MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    Ungarish, M. k Vedensky, 1).: The Motion of a Rising Disk in a Rotating Axially Bounded Fluid for Large Taylor Number,.1. Fluid Mech., 291 (1995), 1–32.MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    Ungarish, M.: Sonic shear-layer and inertial modifications of the geostrophic drag on a slowly rising particle or drop in a rotating fluid, J. Fluid Mech., to appear (1996).Google Scholar
  18. 18.
    Tanzosh, J. P. & Stone, 11. A.: Transverse motion of a disk through a rotating viscous fluid, J. Fluid. Mech., 301 (1995), 295–324.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • M. Ungarish
    • 1
  1. 1.Israel Institute of TechnologyHaifaIsrael

Personalised recommendations