Structure and Transport Properties of Colloidal Suspensions in Stationary Shear Flow

  • J. Blawzdziewicz
Part of the International Centre for Mechanical Sciences book series (CISM, volume 370)


The microstructure in colloidal suspensions can be strongly distorted by a moderate shear flow. Macroscopic transport properties depend on the microstructure and, therefore, are markedly different in equilibrium and in shear-induced nonequilibrium steady states. Experimental and theoretical results are reviewed for colloidal suspensions in stationary shear flow. The shear-rate-dependent stress, mobility, and diffusion tensors and the distortion of the static structure factor are discussed. A detailed microscopic analysis of a semidilute suspensio is presented.


Shear Rate Shear Flow Colloidal Particle Hard Sphere Peclet Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beysens, D., M. Gbadamassi, and L. Boyer: Light-scattering study of a critical mixture with shear flow, Phys. Rev. Lett., 43 (1979), 1253–1255.ADSCrossRefGoogle Scholar
  2. 2.
    Klein, R.: The structure and dynamics of strongly interacting charged colloidal liquids., in: Structure and Dynamics of Strongly Interacting Colloids and Supramolecular Aggregates in Solution (Ed. S.-H. Chen, J. S. Huang and P. Tartaglia ), Kluwer Academic Publishers, Dordrecht 1992.Google Scholar
  3. 3.
    Russel, W. B.: The dynamics of colloidal systems, University of Wisconsin Press, London 1987.Google Scholar
  4. 4.
    Russel, W. B., D. A. S. Saville, and W. R. Schowalter: Colloidal dispersions, Cambridge University Press, Cambridge 1989.CrossRefGoogle Scholar
  5. 5.
    Pusey, P. N.: Colloidal suspensions, in: Liquids, Freezing and the Glass Transition (Ed. D. Levesque, J.-P. Hansen, and J. Zinn-Justin ), Elsevier, Amsterdam 1990.Google Scholar
  6. 6.
    Kim, S. and S. J. Karrila: Microhydrodynamics: Principles and selected applications, Butterworth-Heinemann, London 1991.Google Scholar
  7. 7.
    Durlofsky, L., J. F. Brady, and G. Bossis: Dynamic simulations of hydrodynamically interacting particles, J. Fluid. Mech., 180 (1987), 21–49.ADSCrossRefMATHGoogle Scholar
  8. 8.
    Brady, J. F. and G. Bossis: Stokesian dynamics, Ann. Rev. Fluid Mech., 20 (1988), 111–157.ADSCrossRefGoogle Scholar
  9. 9.
    Ladd, A. J. C.: Hydrodynamic interactions in a suspension of spherical particles, J. Chem. Phys., 88 (1988), 5051–5063.ADSCrossRefGoogle Scholar
  10. 10.
    Ladd, A. J. C.: Hydrodynamic interactions and the viscosity of suspensions of freely moving spheres, J. Chem. Phys., 90 (1989), 1149–1157.ADSCrossRefGoogle Scholar
  11. 11.
    Ladd, A. J. C.: Hydrodynamic transport coefficients of random dispersion of hard spheres, J. Chem. Phys., 93 (1990), 3484–3494.ADSCrossRefGoogle Scholar
  12. 12.
    Cichocki, B., B. U. Felderhof, K. Hinsen, E. Wajnryb, and J. Blawzdziewicz: Friction and mobility of many spheres in Stokes flow, J. Chem. Phys., 100 (1994), 3780–3790.ADSCrossRefGoogle Scholar
  13. 13.
    Cichocki, B. and K. Hinsen: Stokes drag on conglomerates of spheres, Phys. Fluids, 7 (1995), 285–291.ADSCrossRefMATHGoogle Scholar
  14. 14.
    Ladd, A. J. C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech., 271 (1994), 285–309.MathSciNetADSCrossRefMATHGoogle Scholar
  15. 15.
    Ladd, A. J. C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech., 271 (1994), 311–339.MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Felderhof, B. U.: Sedimentation and convective flow in suspensions of spherical particles, Physica A, 153 (1988), 217–233.ADSCrossRefGoogle Scholar
  17. 17.
    Felderhof, B. U.: Dynamics of hard sphere suspensions, Physica A, 169 (1990), 1–16.MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Hansen, J. P. and I. R. McDonald: Theory of simple liquids, Academic Press, London 1976.Google Scholar
  19. 19.
    Nägele, G., M. M. Medina-Noyola, R. Klein, and J. L. Arauz-Lara: Time-dependent self-diffusion in model suspension of highly charged Brownian particles, Physica A, 149 (1988), 123–163.ADSCrossRefGoogle Scholar
  20. 20.
    Hoffman, R. L.: Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observations of a flow instability, Trans. Soc. Rheol., 16 (1972), 155–173.CrossRefGoogle Scholar
  21. 21.
    Clark, N. A. and B. J. Ackerson: Observations of the coupling of concentration fluctuations to steady-state shear flow, Phys. Rev. Lett., 44 (1980), 1005–1008.ADSCrossRefGoogle Scholar
  22. 22.
    Ackerson, B. J.: Shear induced order and shear processing of model hard sphere suspension, J. Rheol., 34 (1990), 553–590.ADSCrossRefGoogle Scholar
  23. 23.
    Ackerson, B. J.: Shear induced order in equilibrium colloidal liquids, Physica A, 174 (1991), 15–30.ADSCrossRefGoogle Scholar
  24. 24.
    Chen, L. B., C. F. Zukoski, B. J. Ackerson, H. J. M. Hanley, G. C. Straty, J. Barker, and C. J. Glinka: Structural changes and orientational order in a sheared colloidal suspension, Phys. Rev. Lett., 69 (1992), 688–691.ADSCrossRefGoogle Scholar
  25. 25.
    Ackerson, B. J., J. van der Werff, and C. G. de Kruif: Hard-sphere dispersions: Small-wave-vector structure-factor measurements in a linear shear flow, Phys. Rev. A, 37 (1988), 4819–4827.CrossRefGoogle Scholar
  26. 26.
    Johanson, S. J., C. G. de Kruif, and R. P. May: Structure factor distortion for hard-sphere dispersions subjected to weak shear flow: Small-angle neutron scattering in the flow-vorticity plane, J. Chem. Phys., 89 (1988), 5909–5921.ADSCrossRefGoogle Scholar
  27. 27.
    van der Werff, J. C., B. J. Ackerson, R. P. May, and C. G. de Kruif: Neutron scattering from dense colloidal dispersions at high shear rates: The deformation of the structure factor in the shear plane, Physica A, 195 (1990), 375–398.CrossRefGoogle Scholar
  28. 28.
    Wagner, N. J. and W. B. Russel: Light scattering measurements of a hard-sphere suspension under shear, Phys. Fluids A, 2 (1990), 491–502.ADSCrossRefGoogle Scholar
  29. 29.
    Woutersen, A. T. J. M, R. P. May, and C. G. de Kruif: The shear-distorted microstructure of adhesive hard sphere dispersions: A small-angle neutron scattering study, J. Rheol., 37 (1993), 71–88.ADSCrossRefGoogle Scholar
  30. 30.
    Yan, Y. D. and J. K. Dhont: Shear-induced structure distortion in nonaqueous dispersions of charged colloidal spheres via light scattering, Physica A, 198 (1993), 78–107.ADSCrossRefGoogle Scholar
  31. 31.
    Chow, M. K. and C. F. Zukoski: Nonequilibrium behavior of dense suspensions of uniform particles: Volume fraction and size dependence of rheology and microstructure, J. Rheology, 39 (1995), 33–58.ADSCrossRefGoogle Scholar
  32. 32.
    Ackerson, B. J., J. B. Hayter, N. A. Clark, and L. Cotter: Neutron scattering from charge stabilized suspensions undergoing shear, J. Chem. Phys., 84 (1986), 2344–2349.ADSCrossRefGoogle Scholar
  33. 33.
    Ashdown, S., I. Markovie, R. H. Ottewill, P. Lindner, R. C. Oberthür, and A. R. Rennie: Small-angle neutron scattering studies on ordered polymer colloid dispersion, Langmuir, 6 (1990), 303–307.CrossRefGoogle Scholar
  34. 34.
    Evans, D. J., S. T. Cui, H. J. M. Hanley, and G. C. Straty: Conditions for the existence of a reentrant solid phase in a sheared atomic fluid, Phys. Rev. A, 46 (1992), 6731–6734.CrossRefGoogle Scholar
  35. 35.
    Ackerson, B. J. and P. N. Pusey: Shear induced order in suspensions of hard spheres, Phys. Rev. Lett., 61 (1988), 1033–1036.ADSCrossRefGoogle Scholar
  36. 36.
    Yan, Y. D., J. K. G. Dhont, C. Smits, and H. N. W. Lekkerkerker: Oscillatoryshear-induced order in nonaqueous dispersions of charged colloidal spheres, Physica A, 202 (1994), 68–80.ADSCrossRefGoogle Scholar
  37. 37.
    Bossis, G., Y. Grasseli, E. Lemaire, A. Meunier, J. F. Brady, and T. Phung: Rheology and microstructure in colloidal suspensions, Phys. Scripta, T49 (1993), 89–93.Google Scholar
  38. 38.
    Heyes, D. M.: Shear thinning of dense suspensions modelled by Brownian dynamics, Phys. Lett. A, 132 (1988), 399–402.ADSCrossRefGoogle Scholar
  39. 39.
    Xue, W. and G. S. Grest: Shear-induced alignment of colloidal particles in the presence of a shear flow, Phys. Rev. Lett., 64 (1990), 419–422.ADSCrossRefGoogle Scholar
  40. 40.
    Krieger, I. M.: Rheology of monodisperse lattices, Adv. Colloid Interface Sci., 3 (1972), 111–136.CrossRefGoogle Scholar
  41. 41.
    Russel, W. B.: Effects of interactions between particles on the rheology of dispersions, in: Theory of Dispersed Multiphase Flow (Ed. R. E. Mayer ), Academic Press, New York 1983.Google Scholar
  42. 42.
    Choi, G. N. and I. M. Krieger: Rheological studies on sterically stabilized model dispersions of uniform colloidal spheres. II. Steady-shear viscosity, J. Colloid Interface Sci., 113 (1986), 101–113.CrossRefGoogle Scholar
  43. 43.
    van der Werff, J. C. and C. G. de Kruif: Hard-sphere colloidal dispersions: The scaling of rheological properties with particle size, volume fraction, and shear rate, J. Rheol., 33 (1989), 421–454.CrossRefGoogle Scholar
  44. 44.
    van der Werff, J. C., C. G. de Kruif, and J. K. G. Dhont: The shear-thinning behaviour of colloidal dispersions. II. Experiments, Physica A, 160 (1989), 205–212.CrossRefGoogle Scholar
  45. 45.
    Chow, M. K. and C. F. Zukoski: Gap size and shear history dependencies in shear thickening of a suspension ordered at rest, J. Rheology, 39 (1995), 15–32.ADSCrossRefGoogle Scholar
  46. 46.
    Al-Hadithi, T. S. R., H. A. Barnes, and K. Walters: The relationship between the linear (oscillatory) and nonlinear (steady-state) flow properties of a series of polymer and colloidal systems, Colloid Polym. Sci., 270 (1992), 40–46.Google Scholar
  47. 47.
    Johma, A. I. and P. A. Reynolds: An experimental study of the first normal stress difference shear stress relationship in simple shear flow for concentrated shear thickening suspensions, R.heol. Acta, 32 (1993), 457–464.Google Scholar
  48. 48.
    Laun, J. M.: Normal stresses in extremely shear thickening polymer dispersions, J. Non-Newt. Fluid Mech., 54 (1994), 87–108.CrossRefGoogle Scholar
  49. 49.
    Ronis, D.: Theory of fluctuations in colloidal suspensions undergoing steady shear flow, Phys. Rev. A, 29 (1984), 1453–1460.CrossRefGoogle Scholar
  50. 50.
    Schwarzl, J. F. and S. Hess: Shear-flow-induced distortion of the structure of a fluid: Application of a simple kinetic equation, Phys. Rev. A, 33 (1986), 4277–4283.CrossRefGoogle Scholar
  51. 51.
    Dhont, J. K. G.: On the distortion of the static structure factor of colloidal fluids in shear flow, J. Fluid Mech., 204 (1989), 421–431.ADSCrossRefMATHGoogle Scholar
  52. 52.
    Blawzdziewicz, J. and G. Szamel: Structure and rheology of semidilute suspension under shear, Phys. Rev. E, 48 (1993), 4632–4636.Google Scholar
  53. 53.
    Brady, J. F. and M. Vicic: Normal stresses in colloidal dispersions, J. Rheology, 39 (1995), 545–566.ADSCrossRefGoogle Scholar
  54. 54.
    Zinchenko, A. Z.: Private communication (1995).Google Scholar
  55. 55.
    Szamel, G., J. Blawzdziewicz, and J. A. L. Leegwater: Self-diffusion in sheared suspensions: Violation of Einstein relation, Phys. Rev. A, 45 (1992), 2173–2176.CrossRefGoogle Scholar
  56. 56.
    Blawzdziewicz, J. and NI. Ekiel-Jezewska: How shear flow of a semidilute suspension modifies its self-mobility, Phys. Rev. E, 51 (1995), 4704–4708.Google Scholar
  57. 57.
    Erlick, D. E.: Source functions for diffusion in uniform shear flow, Aust. J. Phys., 15 (1962), 283–288.Google Scholar
  58. 58.
    Hess, S.: Similarities and differences in the nonlinear flow behavior of simple and molecular fluids, Physica A, 118 (1983), 79–104.MathSciNetADSCrossRefMATHGoogle Scholar
  59. 59.
    Brady, J. F. and J. F. Morris: Microstructure in a strongly-sheared suspension and its impact on rheology and diffusivity, in: IUTAM Symposium on Hydrodynamic Diffusion of Suspended Particles, Estes Park, Colorado, 22–25 July 1995.Google Scholar
  60. 60.
    Qiu, X., H. D. Ou-Yang, D. J. Pine, and Chaikin P. M.: Self-diffusion of interacting colloids far from equilibrium, Phys. Rev. Lett., 61 (1988), 2554–2557.ADSCrossRefGoogle Scholar
  61. 61.
    de Groot, S. R. and P. Mazur: Nonequilibrium thermodynamics, Dover, New York 1984.Google Scholar
  62. 62.
    Sarman, S., D. J. Evans, and A. Baranyai: Mutual and self-diffusion in fluids undergoing strong shear, Phys. Review A, 46 (1992), 893–902.CrossRefGoogle Scholar
  63. 63.
    Sarman, S., D. J. Evans, and P. T. Cummings: Comment on: Nonequilibrium molecular dynamics calculation of self-diffusion in a non-Newtonian fluid subject to a Couette strain field, J. Chem. Phys., 95 (1991), 8675–8676.ADSCrossRefGoogle Scholar
  64. 64.
    Cichocki, B. and K. Hinsen: Self and collective diffusion coefficients of hard sphere suspensions, Ber. Bunsenges. Phys. Chem., 94 (1990), 243–246.CrossRefGoogle Scholar
  65. 65.
    Cichocki, B. and B. U. Felderhof: Dynamic scattering function of dense suspension of hard spheres, Physica A, 204 (1994), 152–168.MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Leegwater, J. A. L. and G. Szamel: Dynamical properties of hard-sphere suspensions, Phys. Rev. A, 46 (1992), 4999–5011.CrossRefGoogle Scholar
  67. 67.
    Szamel, G. and J. A. L. Leegwater: Long-time self-diffusion coefficients of suspensions, Phys. Rev. A, 46 (1992), 5012–5018.CrossRefGoogle Scholar
  68. 68.
    Cichocki, B.: Linear kinetic theory of a suspension of interacting Brownian particles. II. Density-density autocorrelation function, Physica A, 148 (1988), 191–207.ADSCrossRefGoogle Scholar
  69. 69.
    Zinchenko, A. Z. and R. H. Davis: Gravity induced coalescence of drops at arbitrary Péclet numbers, J. Fluid Mech., 280 (1994), 119–148.ADSCrossRefMATHGoogle Scholar
  70. 70.
    Daivis, P. J. and D. J. Evans: Thermal conductivity of shearing fluid, Phys. Rev. A, 48 (1993), 1058–1065.Google Scholar
  71. 71.
    Schmitz, R.: Fluctuations in nonequilibrium fluids, Phys. Rep., 171 (1988), 1–58.CrossRefGoogle Scholar
  72. 72.
    Kirkpatrick, T. R. and J. C. Nieuwoudt: Stability of dense simple fluids subjected to large shear: Shear induced ordering, Phys. Rev. A, 40 (1989), 5238–5248.CrossRefGoogle Scholar
  73. 73.
    Segre, P. N., R. W. Gammon, and J. V. Sengers: Light-scattering measurements of nonequilibrium fluctuations in liquid mixture, Phys. Rev. A, 47 (1993), 1026–1034.Google Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • J. Blawzdziewicz
    • 1
  1. 1.Polish Academy of SciencesWarsawPoland

Personalised recommendations