Generic Singularities for Plastic Instability Problems

  • A. Léger
  • M. Potier-Ferry
Part of the International Centre for Mechanical Sciences book series (CISM, volume 327)


Plastic instability is discussed from the point of view of generic bifurcation theory. We try to get an exhaustive classification of the singularities that can occur for the socalled dissipative systems. This goal is achieved for systems with two degrees of freedom. For continuous systems, we analyse the post-bifurcation behavior of representative beam buckling problems with variable cross-sections.


Variational Inequality Free Boundary Plastic Zone Tangent Modulus Fractional Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BENALLAL, A., BILLARDON, R. and GEYMONAT, G.: C.R. Acad. Sci., 308, II, 1989, 893–897.Google Scholar
  2. 2.
    BUDIANSKY, B.: Theory of buckling and postbuckling behaviour of elastic structures, Advances in Appl. Mech., 14, 1974, 1–65.Google Scholar
  3. 3.
    CAMOTIM, D.R.: To appear in Dynamics Stability of Systems,1992.Google Scholar
  4. 4.
    CHOW, S.N., HALE, J.K., MALLET-PARET, J.: Applications of generic bifurcation, I Arch. Rat. Mech. Anal., 59, 1975, 159–188, II id. 62, 1976, 209–235.CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    CIMETIERE, A.: Modèle incrémental pour la forte flexion des plaques élastoplastiques. C.R. Acad. Sci. Paris, 298, série II, 1984, 99–102.Google Scholar
  6. 6.
    CIMETIERE, A.: Flambage élastoplastique des plaques: Thèse d’Etat, Université de Poitiers, 1987.Google Scholar
  7. 7.
    DUVAUT, G. et LIONS, J.-L.: Equations et inéquations en mécanique et en physique, Dunod, Paris, 1972.Google Scholar
  8. 8.
    ENGESSER, F.: Ueber die Knickfestigkeit Gerader Stäbe, Z. Architektur Ing., vol. 35, 1889, p. 455.Google Scholar
  9. 9.
    GOLUBITSKY, M., SCHAEFFER, D.G.: A theory for imperfect bifurcation via singularity theory, 32, Comm. Pure Appl. Match, 1979, 21–98.Google Scholar
  10. 10.
    GOLUBITSKY, M., SCHAEFFER, D.G.: Singularities and Groups in Bifurcation Theory, vol. 1, Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
  11. 11.
    HILL, R.: A general theory of uniqueness and stability in elastic/plastic solids. J. Mech. Phys. Solids, 6, 1958, 236–249.CrossRefMATHADSGoogle Scholar
  12. 12.
    HUTCHINSON, J.W.: Post-bifurcation behavior in the plastic range, J. Mech. Phys. Solids, 21, 1973, 163–190.CrossRefMATHADSGoogle Scholar
  13. 13.
    HUTCHINSON, J.W.: Imperfection sensitivity in the plastic range, J. Mech. Phys. Solids, 21, 1973, 191–204.CrossRefMATHADSGoogle Scholar
  14. 14.
    HUTCHINSON, J.W.: Plastic buckling, Adv. Appl. Mech., 14, 1974, 67–144.CrossRefGoogle Scholar
  15. 15.
    KOITER, W.T.: On the Stability of Elastic Equilibrium, Thesis, Delft, 1945, English translation NASA Techn. Trans. F-10, 833, 1967.Google Scholar
  16. 16.
    LEGER, A. and POTIER-FERRY, M. Sur le flambage plastique, J. Mécanique Théor. Appl., 7, 1988, 819–857.MATHMathSciNetGoogle Scholar
  17. LEGER, A. and POTIER-FERRY, M. Elastic-plastic post-buckling from a heterogeneous state, to appear in J. Mech. Phys. Solids,1992.Google Scholar
  18. 18.
    NGUYEN, Q.S.: Stabilité et bifurcation en rupture et en plasticité, C.R. Acad. Sci. Paris, 292, série II, 1981, 817–821.Google Scholar
  19. 19.
    NGUYEN, Q.S.: Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale, J. Méc. Théo. Appl., 3, 1984, 41–61.MATHGoogle Scholar
  20. 20.
    NGUYEN, Q.S.: Bifurcation and Postbifurcation Analysis in Plasticity and Brittle Fracture, J. Mech. Phys. Solids, 33, 1987, 303–324.CrossRefADSGoogle Scholar
  21. 21.
    POTIER-FERRY, M.: On the Mathematical Foundations of Elastic Stability Theory, Arch. Rat. Mech. Anal., 78, 1982, 301–320.CrossRefMathSciNetGoogle Scholar
  22. 22.
    POTIER-FERRY, M.: Towards a Catastroph Theory for the Mechanics of Plasticity and Fracture, Int. J. Engng. Sci., 23, 1985, 821–837.CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    POTIER-FERRY, M.: Buckling and Postbuckling, Lecture Notes in Physics, 288, Springer-Verlag, Heidelberg, 1987, 1–82.Google Scholar
  24. 24.
    SHANLEY, F.R.: Inelastic Column Theory, J. Aeronaut. Sci., 14, 1947, 261–267.CrossRefGoogle Scholar
  25. 25.
    TRIANTAFYLLIDIS N. On the Bifurcation and Postbifurcation Analysis of Elastic-Plastic Solids under General Prebifurcation Conditions, J. Mech. Phys. Solids, 31, 1983, 499–510.CrossRefMATHADSGoogle Scholar
  26. 26.
    THOMPSON, J.M.T. and HUNT, G.W.: A General Theory of Elastic Stability, Wiley, London, 1973.MATHGoogle Scholar
  27. 27.
    TVERGAARD, V. and NEEDLEMAN, A.: On the buckling of Elastic-Plastic Columns with Asymmetric Cross-Sections, Int. J. Mech. Sci., 17, 1975, 419–424.CrossRefGoogle Scholar
  28. 28.
    VON KARMAN, Th.: Untersuchungen über knickfestigkeit, mitteilungen über forschungsarbeiten, VDI (Ver. Deut. Ing.) Forschungsh. 81, 1910.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • A. Léger
    • 1
  • M. Potier-Ferry
    • 2
  1. 1.E.D.F.-D.E.R.ClamartFrance
  2. 2.University of MetzMetzFrance

Personalised recommendations