Advertisement

Bifurcation and Localization in Rate-Independent Materials. Some General Considerations

  • A. Benallal
  • R. Billardon
  • G. Geymonat
Part of the International Centre for Mechanical Sciences book series (CISM, volume 327)

Abstract

This work deals with some aspects of bifurcation and localization phenomena for solids made of rate-independent materials. Only the theoretical developments are presented. Physical non-linearities (plasticity, damage, ...) and geometrical non-linearities are taken into account. The analysis is limited to quasi-static loadings. A full and complete analysis of the rate problem for incrementally linear solids is carried out. The first order rate problem is formulated and analysed in the framework of modern theory of linear elliptic boundary value problems. Three conditions are necessary and in the same time sufficient for this problem to be well-posed. These conditions are local in nature and are used to describe localization phenomena.

Keywords

Fredholm Operator Kinematic Hardening Localization Phenomenon Ellipticity Condition Bifurcation Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ACHENBACH, J. D. Wave propagation in elastic media, North-Holland, Amsterdam, New York-Oxford, 1984.Google Scholar
  2. 2.
    AIFANTIS, E. C.: On the Microstructural Origin of Certain Inelastic Models, Trans ASME, J. Eng. Mat. Tech., 106, pp. 326–320, 1984.CrossRefGoogle Scholar
  3. 3.
    TRIANTAFYLLIDIS, N., AIFANTIS, E. C.: A gradient approach to localization of deformation–I. Hyperelastic materials, J. Elasticity, 16, pp. 225–237, 1986.CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    AGMON, S., DOUGLIS, N., NIRENBERG, L.: Estimates near the boundary for solutions of partial differential equations II, Comm. pure and Appl. Math., 12, pp. 623–727, 1964.MathSciNetGoogle Scholar
  5. 5.
    BAIOCCHI, G., BUTTAZZO, G., GASTALDI,F., TOMARELLI, F.: General existence theorems for unilateral problems in continuum mechanics, Arch. Rat. Mech. Anal., 100, pp. 149–189, 1988.CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    BENALLAL, A., BILLARDON, R. and GEYMONAT, G.: Some mathematical aspects of the damage softening rate problem, in: Strain localization and size effect, Ed. J. MAZARS and Z.P. BAZANT, Elsevier Applied Science, pp. 247–258, 1989.Google Scholar
  7. 7.
    BENALLAL, A., BILLARDON, R. and GEYMONAT, G.: Conditions de bifurcation à l’intérieur et aux frontières pour une classe de matériaux non standards, C. R. Acad. Sci., Paris, t.308, série II, pp. 893–898, 1989.Google Scholar
  8. 8.
    BENALLAL, A., BILLARDON, R., GEYMONAT, G.: Phénomènes de localization à la frontière d’un solide, C. R. Acad. Sci. Paris, t. 310, série II, pp. 679–684, 1990.MathSciNetGoogle Scholar
  9. 9.
    BENALLAL, A., BILLARDON, R., GEYMONAT, G.: Localization phenomena at the boundaries and interfaces of solids, in Constitutive Laws for Engineering Materials, Ed Desai et al, ASME Press, pp. 387–390, 1991.Google Scholar
  10. 10.
    BENALLAL, A.: Thermoviscoplasticité et endommagement des structures, Thèse de doctorat d’état, Université Paris 6, 1989.Google Scholar
  11. 11.
    BENALLAL, A.: Quelques remarques sur le rôle des couplages thermomécaniques dans les phénomènes de localisation, C. R. Acad. Sci., Paris, t.312, Série II, pp. 117–122, 1991.Google Scholar
  12. 12.
    BENALLAL, A.: On localization phenomena in thermoelastoplasticity, Arch. Mech., 44, pp. 15–29, 1992.MATHGoogle Scholar
  13. 13.
    BENALLAL, A.: Ill-posedness and localization in solids structures, in Computational Plasticity, Ed. D.R.J. OWEN et al., Pineridge Press, pp. 581–592, 1992.Google Scholar
  14. 14.
    BENALLAL, A., GEYMONAT, G.: in preparation.Google Scholar
  15. 15.
    BERTHAUD,Y., BILLARDON, R., COMI C.: Identification of damageable elastic-plastic materials from localization measurements, in preparation.Google Scholar
  16. 16.
    BILLARDON, R.: Etude de la rupture par la mécanique de l’ endommagement, Thèse de doctorat d’état, Université Paris 6, 1989.Google Scholar
  17. 17.
    BILLARDON, R., DOGHRI, I.: Prévision de l’amorçage d’une macro-fissure par localization de l’endommagement, C. R. Acad. Sci., Paris, t.308, série II, pp. 347–352, 1989.Google Scholar
  18. 18.
    BIOT, M. A.: Surface instability in finite anisotropic elasticity under initial stress, Proc. R. Soc. London, A 273, pp. 329–339, 1963.CrossRefMATHMathSciNetADSGoogle Scholar
  19. 19.
    BIOT, M. A.: Interface instability in finite elasticity under initial stress, Proc. R. Soc. London, A 273, pp. 340–344, 1963.Google Scholar
  20. 20.
    BLANCHARD D., LE TALLEC P.: Numerical analysis of the equations of small strains quasistatic elastoviscoplasticity, Numer. Math., 50, pp. 147–169, 1986.MATHGoogle Scholar
  21. 21.
    BORRE, G. and MAIER, G.: On linear versus non-linear flow rules in strain localization analysis, Meccanica, 24 pp. 36–41 1989.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    DE BORST, R.: Simulation of strain localization: a reappraisal of the Cosserat continuum, Eng. Computations, 8, pp. 317–332, 1991.CrossRefGoogle Scholar
  23. 23.
    DE BORST, R., MULHAUS, H. B.: Gradient dependent plasticity: formulation and algorithmic aspects, Int. J. Num. Meth. Eng., 35 1992 (in press).Google Scholar
  24. 24.
    ERICKSEN, J.L.: Equilibrium of bars, Journal of Elasticity, 5, pp. 131–201, 1975.CrossRefMathSciNetGoogle Scholar
  25. 25.
    FRANCFORT, G., MARIGO, J. J.: Mathematical Analysis of damage evolution in a brittle damaging continuous medium, in Mécanique, Modélisation Numérique et Dynamique des matériaux, Publications du LMA no 124, CNRS, Marseille, pp. 245276, 1991.Google Scholar
  26. 26.
    FRANCFORT, G., MÜLLER, S.: Combined Effects of Homogenization and Singular perturbations in Elasticity, Preprint n° 201, Institut für Angewandte Mathematik, Universität Bonn, 1992.Google Scholar
  27. 27.
    GASTALDI, F., TOMARELLI, F.: Some Remarks on Nonlinear and Noncoercive Variational Inequalities, Bollettino U. M. I., (7) 1-B, pp. 143–165, 1987.Google Scholar
  28. 28.
    GEYMONAT, G.: Sui problemi ai limiti lineari ellittici, Ann. Mat. Pura Appl., s. IV, 69, pp. 207–284, 1965.CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    HADAMARD, J.: Leçons sur la propagation des ondes et les equations de l’hydrodynamique, Paris, 1903.Google Scholar
  30. 30.
    HILL, R.: A general theory of uniqueness Sand stability for elastic plastic solids, J. Mech. Phys.Solids, 6, pp. 236–249, 1958.CrossRefMATHADSGoogle Scholar
  31. 31.
    HILL, R.: Acceleration waves in solids, J. Mech. Phys.Solids, 10, pp. 1–16, 1962.CrossRefMATHMathSciNetADSGoogle Scholar
  32. 32.
    HILL, R.: Uniqueness criteria and extremum principles in self-adjoint problems of continuum mechanics, J. Mech. Phys. Solids, 10, pp. 185–194, 1962.CrossRefMATHMathSciNetADSGoogle Scholar
  33. 33.
    HILL, R.: Aspects of invariance in solids mechanics, Advances in Applied Mechanics, Vol.18, Academec Press, pp. 1–75, 1978.Google Scholar
  34. 34.
    HILL, R., HUTCHINSON, J. W.: Bifurcation phenomena in the plane tension test, J. Mech. Phys. Solids, 23, pp. 239–264, 1975.CrossRefMATHMathSciNetADSGoogle Scholar
  35. 35.
    HUTCHINSON, J. W.: Plastic buckling, Advances in applied mechanics, Vol. 14, Academic Press, pp. 67–144, 1974.Google Scholar
  36. 36.
    HUTCHINSON, J. W., MILES, J. P.: Bifurcation analysis of the onset of necking in an elastic-plastic cylinder under uniaxial tension, J. Mech. Phys. Solids, 22, pp. 61–71, 1974.CrossRefMATHADSGoogle Scholar
  37. 37.
    HUTCHINSON, J. W., TVERGAARD, V.: Surface instabilities on statically strained plastic solids, Int. J. Mech. Sci., 22, pp. 339–354, 1980.CrossRefMATHGoogle Scholar
  38. 38.
    JOHNSON, C.: On Plasticity with hardening, J. Math. Anal. Appl., 62, pp. 325336, 1978.Google Scholar
  39. 39.
    LASRY, D., BELYTSCKO, T.: Localization limiters in transient problems, Int. J. Solids Struct., 24, pp. 581–597, 1988.CrossRefMATHGoogle Scholar
  40. 40.
    LIONS, J.L.: Ouelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, Paris, 1969.Google Scholar
  41. 41.
    LIONS, J.L.: Perturbations singulières dans les problèmes aux limites et en contrôle optimal, L. N. in Mathematics, vol. 323, Springer-Verlag, Berlin, 1973.Google Scholar
  42. 42.
    LIONS, J.L. AND MAGENES, E.: Problèmes aux limites non homogènes, Tome 1, Dunod, Paris, 1964.Google Scholar
  43. 43.
    LORET, B., PREVOST, J.H.: Dynamic strain localization in elasto (visco) plastic solids, Part I -II, Comp. Meth. Appl. Mech. Engineering, 83, pp. 247–294, 1990CrossRefMATHADSGoogle Scholar
  44. 44.
    LOVE, A. E. H.: A treatise on the mathematical theory of elasticity, New York-Dover Publications, 1944.Google Scholar
  45. 45.
    MANDEL, J.: Ondes plastiques dans un milieu indéfini à trois dimensions, J. Mécanique, 1, pp. 3–30, 1962.MathSciNetGoogle Scholar
  46. 46.
    MARSDEN, J.E., HUGHES, T. J. R.: Mathematical foundations of elasticity, Prentice Hall, Englewoods Cliffs, New Jersey, 1983.Google Scholar
  47. 47.
    MULHAUS, H.B., VARDOULAKIS, I.: The thickness of shear bands in granular materials, Geotechnique, 37, pp. 271–283, 1987.CrossRefGoogle Scholar
  48. 48.
    MULHAUS, H. B., AIFANTIS, E. C.: A variational principle for gradient plasticity, Int. J. Solids Struct., 28, pp. 845–857, 1991.CrossRefGoogle Scholar
  49. 49.
    NEEDLEMAN, A.: Non-normality and bifurcation in plane strain tension and compression, J. Mech. Phys. Solids, 27, pp. 231–254, 1979.CrossRefMATHMathSciNetADSGoogle Scholar
  50. 50.
    NEEDLEMAN, A., ORTIZ, M.: Effect of boundaries and interfaces on shear band localization, Int. J. Solids Structures, 28, pp. 859–877, 1991.CrossRefMATHGoogle Scholar
  51. 51.
    NEEDLEMAN, A.: Material rate dependence and mesh sensitivity in localization problems, Comp. Meth. Appl. Mech. Eng., 67, pp. 64–85, 1988.CrossRefGoogle Scholar
  52. 52.
    PETRIK, H., THERMANN, K.: Second order bifurcation in elastic-plastic solids, J. Mech.Phys. Solids, 33, pp. 577–593, 1985.CrossRefMathSciNetADSGoogle Scholar
  53. 53.
    PIJAUDIER-CABOT, G., BAZANT, Z. P.: Nonlocal damage theory, ASCE J. Eng. Mech., 112, pp. 1512–1533, 1987.CrossRefGoogle Scholar
  54. 54.
    RANIECKI, B., BRUHNS, O. T.: Bounds to bifurcation stresses in solids with non-associated plastic flow law at finite strain, J. Mech. Phys. Solids, 29, pp. 153–172, 1981.CrossRefMATHMathSciNetADSGoogle Scholar
  55. 55.
    RICE, J. R.: Plasticity and soil mechanics, Ed. A. C. PALMER, Department of Engineering, University of Cambridge, England, 1973.Google Scholar
  56. 56.
    RICE, J. R.: The localization of plastic deformation, in: Theoretical and Applied Mechanics, Ed. W. T. KOITER, North Holland, pp. 207–220, 1976.Google Scholar
  57. 57.
    RUDNICKI, J. W., RICE, J. R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. Mech. Phys. Solids, 23, pp. 371–394, 1975.CrossRefADSGoogle Scholar
  58. 58.
    RICE, J. R, RUDNICKI, J. W.: A note on some features of the theory of localization of deformation, Int. J. Solids Struct., 16, pp. 597–605, 1980.CrossRefMATHMathSciNetGoogle Scholar
  59. 59.
    SAWYERS, K. N.: in: Finite Elasticity, AMD, 27, Ed. R. S. RIVLIN, A.S.M.E. New-York, 1977.Google Scholar
  60. 60.
    SCHAEFFER, O. G.: Instability and ill-posedness in the deformation of granular materials, hit. J. Num. Anal. Meth. Geomech., 14, pp. 253–278, 1990.CrossRefMATHMathSciNetGoogle Scholar
  61. 61.
    SIMPSON, SPECTOR: Some necessary conditions at an internal boundary for minimizers in finite elasticity, J. of Elasticity, 26, pp. 203-, 1991.Google Scholar
  62. 62.
    SIMO, J. C.: Some aspects of continuum damage mechanics and strain softening, in Strain localization and size effect, Ed. J. MAZARS and Z. P. BAZANT, Elsevier Applied Science, pp. 247–258, 1989.Google Scholar
  63. 63.
    SLUYS, J. L., DE BORST, R.: Strain softening under dynamic loading conditions in: Computer-Aided Analysis and Design of Concrete Structures, Eds N. BICANIC and H. A. MANG, Pineridge Press, pp. 1091–1104, 1990.Google Scholar
  64. 64.
    SON Q. NGUYEN, TRIANTAFYLLIDIS, N.: Plastic bifurcation and post-bifurcation analysis for generalized standard continua, J. Mech. Phys. Solids, 37, pp. 545–566, 1989CrossRefMATHMathSciNetADSGoogle Scholar
  65. 65.
    SUQUET, P.: Discontinuities and Plasticity, in Non-Smooth Mechanics and Applications, C.I.S.M. Lectures Notes, vol. 302, Ed. J. J.MOREAU and P. D. PANAGIOTOPOULOS, Springer-Verlag, 1988Google Scholar
  66. 66.
    STEINMANN, P., WILLAM, K.: Localization in Micropolar elastoplasticity, in Constitutive Laws for Eng. Materials, Ed DESAI et al, ASME Press, pp. 387, 1991.Google Scholar
  67. 67.
    THOMAS, T. Y.: Plastic flow and fracture of solids, Academic Press, 1961.Google Scholar
  68. 68.
    THOMPSON, J. L.: Some existence theorems for the traction boundary value problem of linearized elastostatics, Arch. Rat. Mech. Anal., 32, pp. 369–399, 1969.CrossRefMATHGoogle Scholar
  69. 69.
    TRIANTAFYLLIDIS, N.: Bifurcation phenomena in pure bending, J. Mech. Phys.Solids, 28, pp. 221–245, 1980.CrossRefMATHMathSciNetADSGoogle Scholar
  70. 70.
    VARDOULAKIS, I., SULEM, J., GUENOT, A.: Borehole instabilities as bifurcation phenomena, Int. J. Rock. Mech. Min. Sci. and Geomech. Abstract, 25, pp. 159–170, 1988.CrossRefGoogle Scholar
  71. 71.
    YOUNG, N. J. B. Bifurcation phenomena in the plane compression test, J. Mech. Phys.Solids, 24, pp.77-, 1976.Google Scholar

Copyright information

© Springer-Verlag Wien 1993

Authors and Affiliations

  • A. Benallal
    • 1
  • R. Billardon
    • 1
  • G. Geymonat
    • 1
  1. 1.University of Paris 6Cachan CedexFrance

Personalised recommendations