Viscoplasticity of Geomaterials

  • N. D. Cristescu
Part of the International Centre for Mechanical Sciences book series (CISM, volume 350)


First one describes the main rheological properties exhibited by geomaterials and how to choose the most appropriate constitutive equation in order to describe these dominant properties. One presents the procedure to be followed in order to determine all constitutive functions and parameters necessary to describe transient and stationary creep. Examples are given as well as a comparison of model predictions with the data. Damage and creep failure is described by an energetic criterium. Temperature influence on transient and stationary creep is shortly presented. Finally mining engineering examples are given as creep around vertical shaft or cavern and around horizontal tunnel, dilatancy and/or compressibility, failure and creep failure around underground excavations, closure of caverns, etc.


Constitutive Equation Creep Test Triaxial Test Rock Salt Stationary Creep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABOU-SAYED, A.S., BRECHTEL, C.E. and CLIFTON, R.J. 1978. In situ stress determination by hydrofracturing: a fracture mechanics approach. J. Geophys. Res. 83, No. B6, 2851–2862.CrossRefGoogle Scholar
  2. AMADEI, B. 1983. Rock Anisotropy and the Theory of Stress Measurements. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  3. AUBERTIN, M., GILL, D.E., LADANYI, B. 1991. A unified viscoplastic model for the inelastic flow of alkali halides. Mech. of Mater. 11, 63–82.CrossRefGoogle Scholar
  4. AUBERTIN, M., SGAOULA, J., GILL, D.E. 1992. A damage model for rocksalt: application to tertiary creep. Seventh Int. Symp. on Salt. April 6–9, 1992, Kyoto, Elsevier.Google Scholar
  5. BOEHLER, J.P. 1978. Lois de comportement anisotropique des milieux continus. Journal de Mécanique, 17, 153–190.Google Scholar
  6. BOEHLER, J.P. and RACLIN, J. 1982. Ecrouissage anisotrope des matériaux ortotropes prédéformés. Journal de Mécanique, Numero special, 23–44.Google Scholar
  7. BRACE, W.F. and BOMBOLAKIS, E.G. 1963. A note on brittle crack growth in compression. J. Geophys. Res. 68, 12, 3709–3713.CrossRefGoogle Scholar
  8. BRACE, W.F., PAULDING, B.W.Jr. and SCHOLZ, C. 1966. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res., 71, 16, 3939–3953.CrossRefGoogle Scholar
  9. BUDIMAN, J.S., STURE, S. and KO, H.Y. 1992. Constitutive Behavior of Stress-Induced Anisotropic Cohesive Soil. J. Geotechn. Engng., 118, 13–48.Google Scholar
  10. CARTER, N.L., HANDIN, J., RUSSELL. J.E. and HORSEMAN, S.T. 1993. Rheology of rocksalt. J. Structural Geology (submitted).Google Scholar
  11. CARTER, N.L. and HANSEN, F.D. 1983. Creep of rocksalt. Tectonophysics, 92, 275–333.CrossRefGoogle Scholar
  12. CARTER, N.L., KRONENBERG, A.K., ROSS, J.V. and WILTSCHKO, D.V. 1990, Control of fluids on deformation of rocks. In: Deformation Mechanics; Rheology and Tectonics, Eds. R.J. Knipe and E.H. Rutter. Geol.Soc.spec.Publ., No. 54, 1–13.Google Scholar
  13. CHAN, K.S., BODNER, S.R., FOSSUM, A.F. and MUNSON, D.E. 1992. A constitutive model for inelastic flow and damage evolution in solids under triaxial compression. Mechanics of Materials, 14, 1–14.CrossRefGoogle Scholar
  14. CHAN, K.S., BRODSKY, N.S., FOSSUM, A.F., BODNER, S.R., and MUNSON, D.E.,1993. Damage-induced nonassociated inelastic flow in rock salt. Fourth International Symposium on Plasticity and Its Current Applications, Baltimore, July 19–23, 1993.Google Scholar
  15. CHANG, K.J., YANG, T.-W. 1982. A constitutive Model for the Mechanical Properties of Rock. Int. J. Rock Mech. Min. Sci., 19, 123–133.CrossRefGoogle Scholar
  16. CONSTANTINESCU, M. 1981. Experimental formulation of constitutive equations for solid porous materials. Ph.D. Dissertation, Bucharest.Google Scholar
  17. COOLING, C.M., HUDSON, J.A., and TUNBRIDGE, L.W., 1988. In Situ Rock Stresses and Their Measurements in the U.K. Part II. Site Experiments and Stress Field Interpretation. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr., 25, 6, 371–382.CrossRefGoogle Scholar
  18. CRISTESCU, N. 1979. A viscoplastic constitutive equation for rocks. Preprint Series in Mathematics, No.49/1979, INCREST Bucharest.Google Scholar
  19. CRISTESCU, N. 1982. Rock Dilatancy in Uniaxial Tests. Rock Mechanics, 15, 133–144.CrossRefGoogle Scholar
  20. CRISTESCU, N. 1985a. Fluage, Dilatance et/ou Compressibilité des Roches autour des Puits Verticaux et des Forages Pétroliers. Revue Française de Geotechnique, No. 31, 11–22.Google Scholar
  21. CRISTESCU, N. 1985b. Viscoplastic Creep of Rocks around Horizontal Tunnels. Int. J. Rock Mech. Min. Sci. 22, 6, 453–459.CrossRefGoogle Scholar
  22. CRISTESCU, N. 1985c. Irreversible dilatancy or compressibility of viscoplastic rock-like materials and some applications. Int.J.Plasticity, 1, 3, 189–204.CrossRefGoogle Scholar
  23. CRISTESCU, N. 1985d. Plasticity of compressible/dilatant rock-like materials. Int.J.Engng.Sci. 23, 10, 1091–1100.CrossRefGoogle Scholar
  24. CRISTESCU, N. 1985e. Rock Plasticity. In: Plasticity Today; Modelling, Methods and Applications. Eds. A. Sawczuk and G. Bianchi. Elsevier Appl.Sci.Publ., Ltd., 643–655.Google Scholar
  25. CRISTESCU, N. 1986. Damage and failure of viscoplastic rock-like materials. Int. J. Plasticity, 2, 2, 189–204.CrossRefGoogle Scholar
  26. CRISTESCU, N. 1987. Elastic/Viscoplastic Constitutive Equations for Rock. Int. J. Rock Mech. Min. Sci., 24, 5, 271–282.CrossRefGoogle Scholar
  27. CRISTESCU, N. 1989a. Rock Rheology. Kluwer Academic Pulishers, Dordrecht, Holland, 336 pp.CrossRefGoogle Scholar
  28. CRISTESCU, N. 1989b. Plasticity of Porous Materials. In: Proc.of Plasticity ‘89. The Second Int.Symp.on Plasticity and its Current Applications. Eds. A.S.Khan and M.Tokuda, Pergamon Press, 11–14.Google Scholar
  29. CRISTESCU, N. 1991a. Nonassociated elastic/viscoplastic constitutive equations for sand. Int. J. Plasticity, 7, 41–64.CrossRefGoogle Scholar
  30. CRISTESCU, N. 1991b. Constitutive equations for rock salt. In: Anisotropy and Localization of Plastic Deformation. Proc. of Plasticity ‘81 Symposium, Grenoble, 12–16 Aug. 1991, Eds. J.-P. Boehler and A.S. Khan, Elsevier Appl.Sci., London, 201–204.CrossRefGoogle Scholar
  31. CRISTESCU, N. 1992. Constitutive equation for rock salt and mining applications. Seventh Int. Symp. on Salt, April 6–9, 1992, Kyoto, Elsevier Science Publ., Amsterdam, vol. 1, 105–115.Google Scholar
  32. CRISTESCU, N. 1993a. A general constitutive equation for transient and stationary creep of rock salt. Int. J. Rock Mech.Min. Sci. and Geomech. Abstr., 30, 125–140.CrossRefGoogle Scholar
  33. CRISTESCU, N. 1988. Viscoplastic creep of rocks around a lined tunnel. Int.J.Plasticity, 4, 4, 393–412.CrossRefGoogle Scholar
  34. CRISTESCU, N. 1993b. Rock Rheology. In: Comprehensive Rock Engineering, vol.1, Rock Mechanics Principles, Pergamon Press.Google Scholar
  35. CRISTESCU, N. 1993c. Failure and creep failure around an underground opening. In: Int. Symp. on Assessment and Prevention of Failure Phenomena in Rock Engineering, Istanbul 5–7 April 1993, Balkema, Rotterdam, 205–210.Google Scholar
  36. CRISTESCU, N. 1994. A procedure to determine nonassociated constitutive equations for geomaterials. Int. J. Plasticity, 10 (in press).Google Scholar
  37. CRISTESCU, N. and FLOREA D. 1992. Temperature influence on the elastic/ viscoplastic behaviour of bituminous concrete. Rev. Roumaine de Mécanique Appliquée, 37, 603–614.Google Scholar
  38. CRISTESCU, N. and HUNSCHE, U. 1992. Determination of a nonassociated constitutive equation for rock salt from experiments. In: Finite Inelastic Deformations — Theory and Applications. IUTAM Symp., Hannover, 19–23 Aug. 1991, Eds. D. Besda and E. Stein, Springer Verlag, Berlin-Heidelberg, 511–523.CrossRefGoogle Scholar
  39. CRISTESCU, N. and HUNSCHE, U. 1993a. A constitutive equation for salt. Proc. 7th Int. Congr. Rock Mech.., Aachen, 16–20 Sept. 1991. Balkema, Rotterdam/Brookfield, vo. 3, 1821–1830.Google Scholar
  40. CRISTESCU, N. and HUNSCHE, U. 1993b. A viscoplastic model for stationary and transient creep of rock salt. Fourth Int. Symp. on Plasticity and Its Current Applications,Baltimore, July 19–23 (in press).Google Scholar
  41. CRISTESCU, N. and HUNSCHE, U. 1993c. A comprehensive constitutive equation for rock salt: determination and application. 3rd Conf. on the Mechanical Behavior of Salt. Paris, 1993, 177–191 (in press).Google Scholar
  42. CRISTESCU, N., NICOLAE M. and TEODORESCU, S. 1989. Coal Rheology. In: Inelastic Solids and Structures, Pineridge Press, Swansea, 165–177.Google Scholar
  43. CRISTESCU, N. and SULICIU, I. 1982. Viscoplasticity. Martinus Nijhoff Co, Hague — Editura Tehnica Bucuresti, 307 pp.Google Scholar
  44. CUNHA, A.P. 1990. Scale effects in rock mechanics. In: Scale Effects in Rock Masses, Ed. A. Pinto da Cunha, Balkema, Rotterdam, 3–27.Google Scholar
  45. DESAI, C.S. 1990. Modelling and testing: implementation of numerical models and their application in practice. CISM Courses and lectures, No.311, Springer Verlag, Wien-New York, 1–168.Google Scholar
  46. DESAI, C.S., SOMASUNDARAM, S. and FRANTZISKONIS, G. 1986. A hierarhchical approach for constitutive modeling of geologic materials. Int. J. Numer. Analyt. Meth. in Geomech., 10, 3, 225–257.CrossRefGoogle Scholar
  47. DESAI, C.S., and VARADARAJAN, A. 1987. A constitutive model for quasistatic behavior of rock salt. J. Geophys. Res. 92, No. B11, 11445–11456.CrossRefGoogle Scholar
  48. DESAI, C.S. and ZHANG, D. 1987. Viscoplastic model for geologic materials with generalized flow rule. Int. J. Numer. Analyt. Meth. in Geomech.,11 603–620.Google Scholar
  49. DRAGON, A. and MRÔZ, Z. 1979. A Model for Plastic Creep of Rock-Like Materials Accounting for the Kinetics of Fracture. Int. J. Rock Mech. Min. Sci. and Geomech Abstr. 16, 253–259.CrossRefGoogle Scholar
  50. DRUCKER, D. 1988. Conventional and Unconventional Plastic Response and Representation. Appl. Mech. Review, 41, 151–162.CrossRefGoogle Scholar
  51. FISCHER, R.F., LIGHT, B.D. and PASLAY, P.R. 1992. Salt-cavern closure during and after formation. Seventh Int. Symp. on Salt. April 6–9, 1992, Kyoto, Elsevier Science Publ., Amsterdam.Google Scholar
  52. FLOREA, DELIA. 1993a. Associated elastic/viscoplastic model for bituminous concrete. Int. J. Engng. Sci. (in press).Google Scholar
  53. FLOREA, DELIA. 1993b. Nonassociated elastic/viscoplastic model for bituminous concrete. Int. J. Engng. Sci. (in press).Google Scholar
  54. FRAYNE, M.A., ROTHENBURG, L. and DUSSEAULT, M.B. 1993. Four case studies in saltrock — Determination of material parameters for numerical modelling. Proc. 3rd Conf on Mechanical Behavior of Salt. Paris 1993. 457–468 (in press).Google Scholar
  55. GATES, D.J. 1988a. A Microscopic Model for Stress-Strain Relations in Rock–Part I. Equilibrium Equations. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 25, 6, 393–401.CrossRefGoogle Scholar
  56. GATES, D.J. 1988b. A Microscopic Model for Stress-Strain Relations in Rock–Part II. Triaxial Compressive Stress. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 25, 6, 403–410.CrossRefGoogle Scholar
  57. HANSEN, F.D. and CARTER, N.L. 1980. Creep of rock salt at elevated temperature. 21st U.S. Symp. on Rock Mechanics, May 28–30, 1980, University of Missouri — Rolla. Preprint.Google Scholar
  58. HANSEN, F.D. and MELLEGARD, K.D. 1979. Quasi-static strength and deformational characteristics of domal salt from Avery Island. Topical Report RSI-0098.Google Scholar
  59. HANSEN, F.D. and MELLEGARD, K.D. 1980. Creep of 50-mm Diameter Specimens of Some Salt from Avery Island, Louisiana, RE/SPEC ONWI-104.Google Scholar
  60. HANSEN, F.D., MELLEGARD, K.D. and SENSENY, P.E. 1984. Elasticity and strength of ten natural rock salt. In: The Mechanical Behavior of Salt. Proc. First Conf. Edited by H.R. Hardy, Jr., and M. Langer. Trans Tech Publ., Clausthal-Zellerfeld, 71–83.Google Scholar
  61. HERGET, G. 1987. Stress Assumptions for Underground Excavations in the Canadian Schield. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 24, 1, 95–97.CrossRefGoogle Scholar
  62. HERRMANN, W., LAUSON, H.S. 1981. Analysis of Creep Data for Various Natural Rock Salts. Sandia Rep. SAND81–2567.Google Scholar
  63. HERRMANN, W., WAWERSIK, W.R. and LAUSON, H.S. 1980. Creep curves and fitting parametrs for southeastern New Mexico bedded salt. Sandia Rep. SAND-80–0087.Google Scholar
  64. HETTLER, A., GUDEHUS, G. and VARDOULAKIS, I. 1984. Stress-Strain Behaviour of Sand in Triaxial Tests. In: Results of the Int. Workshop on Constitutive Relations for Soils, Eds. G. Gudehus, F. Darve and I. Vardoulakis, 6–8 Sept. 1982, Grenoble. Balkema, Rotterdam, 55–66.Google Scholar
  65. HORII, H. and NEMAT-NASSER, S. 1985. Compression-induced microcracks growth in brittle solids: axial splitting and shear failure. J. Geophys. Res. 90, 3105–3125.CrossRefGoogle Scholar
  66. HORII, H. and NEMAT-NASSER, S. 1986. Brittle failure in compression: splitting, faulting and brittle-ductile transition. Phil. Trans. Royal Soc. London, 319, 1549, 337–374.Google Scholar
  67. HUNSCHE, U. 1988 - Private communicationGoogle Scholar
  68. HUNSCHE, U. 1991a. Volume change and energy dissipation in rock salt during triaxial failure tests., Mechanics of Creep Brittle Materials 2, Eds. A.C.F. Cocks and A.R.S. Ponter, Coll. 2–4 Sept. 1991 Leicester. Elsevier, London, 172–182.Google Scholar
  69. HUNSCHE, U. 1991a - Private communication.Google Scholar
  70. HUNSCHE, U. 1992a. True triaxial failure tests on cubic rock salt samples. experimental methods and results. In: Finite Inelastic Deformations–Theory and Applications. Proc IUTAM Symp. Hannover, Aug. 1991. Eds. D. Besdo and E. Stein. Springer Verlag, Berlin-Heidelberg, 525–536.CrossRefGoogle Scholar
  71. HUNSCHE, U. 1992b. Failure Behaviour of Rock Salt around Underground Cavities. Sevents Int. Symp. on Salt. April 6–9, 1992, Kyoto, Elsevier, Amsterdam, 59–65.Google Scholar
  72. HUNSCHE, U. and CRISTESCU, N. 1994 (in preparation).Google Scholar
  73. HUNSCHE, U., MINGERZAHN, G. and SCHULZE, O. 1993. The influence of textural parameters and mineralogical composition on the creep behavior of rock salt. Proc. 3rd Conf on the Mechanical Behavior of Salt,Paris 1993, 129–138 (in press).Google Scholar
  74. HUNSCHE, U, and SCHULZE, O. 1993. Effect of humidity and confining pressure on creep of rock salt. 3rd Conf on the Mechanical Behavior of Salt. Paris, 223–234 (in press).Google Scholar
  75. KRANZ, R.L., BISH, D.L. and BLACIC, J. D. 1989. Hydration and dehydration of zeolitic tuff from Yucca Mountain, Nevada. Geophys. Res. Let., 16, 10, 1113–1116.CrossRefGoogle Scholar
  76. LADE, P.V., NELSON, R.B. and ITO, Y.M. 1987. Nonassociated flow and stability of granular materials. J. Engng. Mech., 113, 1302–1318.Google Scholar
  77. LADE, P.V. and KIM, M.K. 1988. Single Hardening Constitutive Model for Frictional Materials. II. Yield Criterion and Plastic Work Contours. Computers and Geotechnique, 6, 13–29.CrossRefGoogle Scholar
  78. LADE, P.V. and PRADEL, D. 1990. Instability and Plastic Flow of Soil. I. Experimental Observations. J. Engng. Mech., 116, 25–32.Google Scholar
  79. LAJTAI, E.Z. and SCOTT DUNCAN, E.J. 1988. The Mechanism of deformation and fracture in potash rock. J. Can. Geotechn. 25, 262–278.CrossRefGoogle Scholar
  80. LAJTAI, E.Z., SCOTT DUNCAN, E.J. and CARTER, B.J. 1991. The Effect of Strain Rate on Rock Strength. Rock Mechanics and Rock Engineering, 24, 99–109.CrossRefGoogle Scholar
  81. LAJTAI, E.Z., SCHMIDTKE, R.H. and BIELUS, L.P. 1987. The Effect of Water on the Time-dependent Deformation and Fracture of a Granite. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 24, 4, 247–255.CrossRefGoogle Scholar
  82. LAMA, R.D. and VUTUKURI, V.S. 1978. Handbook on Mechanical Properties of Rocks. II and M. Trans Tech Publ., Clausthal-Zellerfeld.Google Scholar
  83. LINDNER, E.N., and HALPERN, J.A. 1978. In-situ stress in North America. A compilation. Int.J. Rock Mech.Min.Sci.and Geomech Abstr. 15, 183–203.CrossRefGoogle Scholar
  84. LUX, K.H. and HEUSERMANN, S. 1983. Creep Tests on Rock Salt with Changing Load as a Basis for the Verification of Theoretical Material Laws. Sixth International Symposium on Salt., 1983, vol.1, Salt Institute, 417–435.Google Scholar
  85. MARTINETTI, S. and RIBACCHI, R. 1980. In Situ Stress Measurements in Italy. Rock Mechanics, 9, 31–47.Google Scholar
  86. MELLEGARD, K.D., SENSENY, P.E. and HANSEN, F.D. 1981. Quasi-Static Strength and Creep Characteristics of 100-mm diameter specimens of salt from Avery Island, Louisiana, RE/SPEC, ONWI-250.Google Scholar
  87. MUNSON, D.E., DE VRIES, K.L., SCHIERMEISTER, D.M., DE YONGE W.F. and JONES R.L. 1992. Measured and calculated closures of open and brine filled shafts and deep vertical boreholes in salt. In: Rock Mechanics. Proc. of the 33rd U.S. Symp., Balkema, Rotterdam/Brookfield, 439–448.Google Scholar
  88. MUNSON, D.E, and WAWERSIK, W.R. 1993. Constitutive modeling of salt behavior State of the technology. Proc. Seventh Int. Congr. on Rock Mechanics, Aachen, Sept. 1991, Balkema, Rotterdam-Brookfield, 1797–1810.Google Scholar
  89. REED, M.B. and CASSIE, J. 1988. Non-associated flow rules in computational plasticity. In: Numerical Methods in Geomechanics. Ed. G. Swoboda, Innsbruck, Balkema, Rotterdam, 481–488.Google Scholar
  90. NOVA, R. 1980. The failure of transversely isotropic rocks in triaxial compression. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 17, 325–332.CrossRefGoogle Scholar
  91. RUMMEL, F. and BAUMGARTNER, J. 1985. Hydraulic Fracturing In-Situ Stress and Permeability Measurements in the Research Borehole Kronzen, Hohen Venn (West Germany). N. Jb. Geol. Palaont. Abh. 171, 183–193.Google Scholar
  92. SANO, O., ITÔ, I. and TERADA, M. 1981. Influence of strain rate on dilatancy and strength of Oshima granite under uniaxial compression. J. Geophys. Res. 86, No. B10, 9299–9311.CrossRefGoogle Scholar
  93. SAXENA, P.C., MOKHASHI, S.L. and RAME GOWDA, B.M. 1979. Rock stress measurements at Nagjhari tunnels, Kalinadi Hydro-electric project, India. Fourth Int. Congr. on Rock Mechanics, Montreux, Balkema, Rotterdam, 589–594.Google Scholar
  94. SCHULZE, O. 1993. Effect of humidity on creep of rock salt. Proc. Seventh Int. Congr. on Rock Mechanics, Aachen, Sept. 1991, Balkema, Rotterdam-Brookfield.Google Scholar
  95. SENSENY, P.E. 1985. Determination of a Constitutive Law for Salt at Elevated.Temperature and Pressure. Measurements of Rock Properties at Elevated Pressures and Temperatures, ASTM STP 869. Eds. H.J. Pincus and E.R. Hoskins, Amer. Soc. for Testing and Materials, Philadelphia, 55–71.Google Scholar
  96. SENSENY, P.E. 1986. Triaxial Compression Creep Tests on Salt From the Waste Isolation Pilot Plant. SANDIA Rep. SAND85–7261.Google Scholar
  97. SENSENY, P.E., HANSEN, F.D., RUSSELL, J.E., CARTER, N.L. and HANDIN, J.W. 1992. Mechanical Behaviour of Rock salt: Phenomenology and Micromechanisms. Int. J. Rock Mech. Min. Sci. 29, 363–378.CrossRefGoogle Scholar
  98. SENSENY, P.E., BRODSKY, N.S. and DeVRIES, K.L. 1993. Parameter evaluation for a unified constitutive model. J. Engr. Mat. Technol. ASME (submitted).Google Scholar
  99. SMITH, M.B. and CHEATHAM, J.B.Jr. 1980. An anisotropic compacting yield condition applied to porous limestone. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 17, 159–165.CrossRefGoogle Scholar
  100. VAN SAMBEEK, L.L. 1992. Testing and modeling of backfill used in salt and potash mines. In: Rock Support in Mining and Underground Construction. Eds. P.K. Kaiser and D.R. McCreath. Balkema, Rotterdam, 583–589.Google Scholar
  101. VAN SAMBEEK, L.L., FOSSUM, A., CALLAHAN, G. and RATIGAN, J. 1992. Salt Mechanics: Empirical and Theoretical Developments. Seventh Int. Symp. on Salt, Kyoto, April 1992, Elsevier Science Publ., AmsterdamGoogle Scholar
  102. VUTUKURI, V.S., LAMA, R.D. and SALUJA, S.S. 1974. Handbook on Mechanical Properties of Rocks. Vol 1, Trans Tech Publ., Clausthal-Zellerfeld.Google Scholar
  103. WANTEN, P.H., SPIERS, C.J. and PEACH, C.J. 1993. Deformation of NaC1 single crystals at 0.27 Tm<T<0.44 Tm. Proc. 3rd Conf. on Mechanical Behavior of Salt,Paris, 1993, 103–114 (in press).Google Scholar
  104. WAWERSIK, W.R. and HANNUM, D.W. 1980. Mechanical behavior of New Mexico rock salt in triaxial compression up to 200°C. J. Geophys. Res. 85, No. B2, 891–900.CrossRefGoogle Scholar
  105. WAWERSIK, W.R. and ZEUCH, D.H. 1986. Modeling and mechanistic interpretation of creep of rock salt below 200°C. Tectonophysics. 121, 125–152.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1994

Authors and Affiliations

  • N. D. Cristescu
    • 1
  1. 1.University of FloridaGainesvilleUSA

Personalised recommendations