Computational Methods in Composite Analysis and Design

  • F. G. Rammerstorfer
  • K. Dorninger
  • A. Starlinger
  • I. C. Skrna-Jakl
Part of the International Centre for Mechanical Sciences book series (CISM, volume 348)


In this Chapter formulations of special finite shell elements for the analysis of com­posite shell structures (layered fiber-composite and sandwich shells) as well as com­putational considereations of local effects are described. Nonlinearities due to large deformations and progressive damage as well as local and global loss of stability are treated. Finally, some practical applications of the computational procedures are described.


Fiber Orientation Fiber Reinforce Polymer Local Buckling Leaf Spring Composite Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rammerstorfer F.G., Dorninger K., Starlinger A.: Composite and Sandwich Shells; in “Nonlinear Analysis of Shells by Finite Elements” (Ed. F.G.Rammerstorfer), pp. 131–194, Springer-Verlag, Vienna, 1992.Google Scholar
  2. 2.
    Rammerstorfer F.G., Böhm H.J.: Micromechanics for Macroscopic Material Description of FRPs; in this book, 1994.Google Scholar
  3. 3.
    Whitney J.M.: Free-Edge Effects in the Characterization of Composite Materials; in “Analysis of the Test Methods for High Modulus Fibers and Composites” ASTM STP 521, American Society for Testing and Materials, Philadelphia, PA, 1973.CrossRefGoogle Scholar
  4. 4.
    Kassapoglou C., Lagace P.A.: Closed Form Solutions for the Interlaminar Stress Fields in Angle-Ply and Cross-Ply Laminates; J.Compos.Mater. 21, 292–308, 1987.Google Scholar
  5. 5.
    Rose C.A., Herakovich C.T.: An Approximate Solution for Interlaminar Stresses in Composite Laminates; Compos.Engng. 3, 271–285, 1993.Google Scholar
  6. 6.
    Rammerstorfer F.G., Starlinger A.: Lamination Theory; in this book, 1994.Google Scholar
  7. 7.
    Noor A.K., Burton W.S.: Computational Models for High-Temperature Multilayered Composite Plates and Shells; Appl.Mech.Rev. 45, 419–446, 1992.Google Scholar
  8. 8.
    Dorninger K., Rammerstorfer F.G.: A Layered Composite Shell Element for Elastic and Thermoelastic Stress and Stability Analysis at Large Deformations; Int.J.Num. Meth.Engng. 30, 833–858, 1990.zbMATHGoogle Scholar
  9. 9.
    Ramm E., Matzenmiller A.: Large Deformation Shell Analysis Based on the Degeneration Concept; in “Finite Element Methods for Plate and Shell Structures” (Eds. T.J.R. Hughes, E Hinton ), Pineridge Press, Swansea, 1986.Google Scholar
  10. 10.
    Böhm H.J.: Description of Thermoelastic Composites by a Mean Field Approach; in this book,1994.Google Scholar
  11. 11.
    Başar Y.: Finite-Rotation Theories for Composite Laminates; Acta Mech. 98, 159–176, 1993.Google Scholar
  12. 12.
    Başar Y., Yunhe Ding, Schultz R.: Refined Shear Deformation Models for Composite Laminates with Finite Rotations; Int.J.Sol.Struct. 30, 2611–2638, 1993.Google Scholar
  13. 13.
    Gruttmann F., Wagner W., Meyer L., Wriggers P.: A Nonlinear Composite Shell Element with Continuous Interlaminar Shear Stresses; Comput.Mech. — in pressGoogle Scholar
  14. 14.
    Dorninger K.: Entwicklung von nichtlinearen FE-Algorithmen, zur Berechnung von Schalenkonstruktionen aus Fas erverbundschalen. VDI-Fortschrittsberichte 18/65, VDI-Verlag, Düsseldorf, 1989.Google Scholar
  15. 15.
    Starlinger A.: Development of Efficient Finite Shell Elements for the Analysis of Sandwich Structures Under Large Deformations and Global as Well as Local Instabilities. VDI-Fortschrittsberichte 18/93, VDI-Verlag, Düsseldorf, 1991.Google Scholar
  16. 16.
    Ramm E.: Geometrisch nichtlineare Elastostatik und finite Elemente. Habilitationsschrift, Universität Stuttgart, Stuttgart, 1975.Google Scholar
  17. 17.
    Wagner W.: Nonlinear Stability Analysis of Shells with the Finite Element Method; in “Nonlinear Analysis of Shells by Finite Elements” (Ed. F.G.Rammerstorfer ), Springer-Verlag, Vienna, 1992.Google Scholar
  18. 18.
    Tauchert T.R.: Thermal Stresses in Plates — Statical Problems; in “Thermal Stresses I” (Ed. R.B.Hetnarski ), North-Holland, Amsterdam, 1986.Google Scholar
  19. 19.
    Rammerstorfer F.G.: Repetitorium Leichtbau. Oldenbourg Verlag, Vienna, 1992.Google Scholar
  20. 20.
    Wang J.T., Lotts C.G., Davis D.D., Krishnamurthy T.: Coupled 2D–3D Finite Element Method for Analysis of a Skin Panel with a Discontinous Stiffener; Proc. AIAA/ASME/ASCE/AHS/ASC 33rd Structures, Structural Dynamics and Materials Conference, Dallas, TX, Part 2, Paper No. 92–2474-CP, pp. 818–827, 1992.Google Scholar
  21. 21.
    Reddy J.N., Pandey A.K.: A First-Ply Failure Analysis of Composite Laminates; Comput.Struct. 25, 371–393, 1987.zbMATHGoogle Scholar
  22. 22.
    Skrna-Jakl I., Rammerstorfer F.G.: Numerical Investigation of the Free Edge Effects in Integrally Stiffened Layered Composite Panels; Int.J.Comput.Struct. 25, 129–137, 1993.Google Scholar
  23. 23.
    Christensen R.M., DeTeresa S.J.: Elimination/Minimization of Edge-Induced Stress Singularities in Fiber Composite Laminates; Int.J.Sol.Struct. 29, 1221–1231, 1992.zbMATHGoogle Scholar
  24. 24.
    Jakl I.: Strukturanalyse des Side Wall Panels des MD-11 Flugzeuges. Diploma Thesis, TU Wien, Vienna, 1989.Google Scholar

Copyright information

© Springer-Verlag Wien 1994

Authors and Affiliations

  • F. G. Rammerstorfer
    • 1
  • K. Dorninger
    • 2
  • A. Starlinger
    • 3
  • I. C. Skrna-Jakl
    • 4
  1. 1.Vienna Technical UniversityViennaAustria
  2. 2.SATURN Corp.TroyUSA
  3. 3.AIREX Composite EngineeringSinsSwitzerland
  4. 4.Vienna Technical UniversityViennaAustria

Personalised recommendations