Fatigue of Composites: A CDM Perspective

  • M. Chrzanowski
Part of the International Centre for Mechanical Sciences book series (CISM, volume 348)


The paper gives an overview of the Continuum Damage Mechanics (CDM) capability to describe fatigue failure in composites. As both phenomena: fatigue failure and composites deterioration are of high complexity, the general approach offered by Continuum Damage Mechanics is presented, rather than detailed description of both.

The main features of both processes are highlighted and a qualitative description of different aspects of fatigue failure is given. Two stages of the failure process, namely macrocrack nucleation and its propagation are distinguished and shown to be described by means of CDM. High and low cycle fatigue are distinguished, as well as the influence of time dependent behaviour of a material upon its fatigue resistance. A simple damage law for anisotropic materials is proposed, too.

The paper is meant as a source of references for further study of this complex phenomenon which still deserves systematic and fundamental investigations.


Stress Amplitude Fibre Reinforce Polymer Fatigue Failure Continuum Darnage Mechanics Fatigue Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fatigue of Composite Materials, ASTM STP 569, 1975.Google Scholar
  2. 2.
    Fatigue of Filamentary Composite Materials, ASTM STP 636, 1977.Google Scholar
  3. 3.
    Fatigue of Fibrous Composite Materials, ASTM STP 723, 1981.Google Scholar
  4. 4.
    Composite Materials: Fatigue and Fracture, ASTM STP 907, 1986.Google Scholar
  5. 5.
    Composite Materials: Testing and Design (Second Conference), ASTM STP 497, 1972.Google Scholar
  6. 6.
    The Test Methods for High Modulus Fibers and Composites, ASTM STP 521, 1973.Google Scholar
  7. 7.
    Composite Materials: Testing and Design (Third Conference), ASTM STP 546, 1974.Google Scholar
  8. 8.
    Composite Reliability, ASTM STP 580, 1975.Google Scholar
  9. 9.
    Fracture Mechanics of Composites, ASTM STP 593, 1975.Google Scholar
  10. 10.
    Composite Materials: Testing and Design (Fourth Conference), ASTM STP 617, 1977.Google Scholar
  11. 11.
    Advanced Composite Materials - Environmental Effects, ASTM STP 658, 1978.Google Scholar
  12. 12.
    Composite Materials: Testing and Design (Fifth Conference), ASTM STP 674, 1979.Google Scholar
  13. 13.
    Fatigue Mechanisms, ASTM STP 676, 1979.Google Scholar
  14. 14.
    Nondestructive Evaluation and Flow Criticality for Composite Materials, ASTM STP 696, 1979.Google Scholar
  15. 15.
    Test Methods and Design Allowables for Fibrous Composites, ASTM STP 734, 1981.Google Scholar
  16. 16.
    Damage in Composite Materials, ASTM STP 775, 1982Google Scholar
  17. 17.
    High Modulus Fiber Composites in Ground Transportation and High Volume Applications, ASTM STP 873,1983.Google Scholar
  18. 18.
    Delamination and Debonding of Materials, ASTM STP 876, 1985.Google Scholar
  19. 19.
    Composite Materials: Testing and Design ( Ninth Volume ), ASTM STP 1059, 1990.Google Scholar
  20. 20.
    Dvorak, G.J., Lagoudas, D.C. (eds): Microcracking-Induced Damage in Composites, AMD-Vol.111, MD-Vol.22, ASME, 1990.Google Scholar
  21. 21.
    Beaumont, W.R, Crane, R.L., Ryder, J.T.: Fracture and Damage Mechanics of Composite Materials, Reference Materials for the seminar held 1–3 April, 1992, San Antonio, Texas, USA, Technomic Publishing Co., Lancaster, PA 1992.Google Scholar
  22. 22.
    Talreja, R.: Fatigue of Composite Materials, Technomic Publishing Co., Lancaster, PA 1987.Google Scholar
  23. 23.
    Zwben,C., Hahn.H.T., Chou,T.-W.: Mechanical Behavior and Properties of Composite Materials, in: Delaware Composites Design Encyclopaedia, vol.1., Technomic Publishing Co., Lancaster, PA, 73–127, 1989.Google Scholar
  24. 24.
    Datoo, M.H.: Mechanics of Fibrous Composites, Elsevier, 1991.Google Scholar
  25. 25.
    Janson, J., Hult, J.: Fracture Mechanics and Damage Mechanics a Combined Approach, J.mécanique appliquée, 1, 1 (1977), 69–84.Google Scholar
  26. 26.
    Kachanov, L.M.: On time to rupture in creep conditions (in Russian), Izv. An SSSR, OTN (1958), 26–31.Google Scholar
  27. 27.
    Rabotnov, Yu.N., On a Mechanism of Delayed Fracture (in Russian), in: Vopr. Prochn. Mat. Konstr., Izd. AN SSSR (1959), 5–7.Google Scholar
  28. 28.
    Sims, D.F., Brogdon, V.H.: Fatigue Behavior of Composites Under Different Loading Modes, in: ASTM STP 636 (1977), 185–205.Google Scholar
  29. 29.
    Mandel, J.F., Huang, D.D., McGarry, F.J.: In: Proc. 36th Ann.Tech. Conf. RP/C Inst., SPI, Inc., 10-A, 1981.Google Scholar
  30. 30.
    Vakulenko, A.A., Kachanov, M.L.: Continuum Theory of Media with Cracks (in Russian), Mekh. Tv. Tela, 4 (1971), 159–166.Google Scholar
  31. 31.
    Zienkiewicz, O.C., Cormeau, I.C.: Visco-Plasticity, Plasticity, and Creep in Elastic Solids–A Unified Numerical Solution Approach, Int.J.Num.Meth. in Eng., 8 (1974), 821–853.CrossRefzbMATHGoogle Scholar
  32. 32.
    Chrzanowski, M., Bodnar, A., Latus, P.: Lifetime Evaluation of Creeping Structures, in: Proc. 5th Int.Conf. on Creep, Lake Buena Vista, Florida, USA, 18–21 May, 1992, ASM, 1992, 461–469.Google Scholar
  33. 33.
    Coffin L.F.: Notch Fatigue Crack Initiation Studies in a High Strength Nickel Base Superalloy, Eng. Fract. Mech., 28 (1987), 485–503.CrossRefGoogle Scholar
  34. 34.
    Lemaitre, J.: Damage Measurements, Eng. Fract. Mech., 28 (1987), 643–661.CrossRefGoogle Scholar
  35. 35.
    Skelton, R.P.: High Strain Fatigue Testing at Elevated Temperature: a Review, High Temp.Techn., 3 (1985), 179–194.Google Scholar
  36. 36.
    Chrzanowski, M., Hult, J.: Ductile Creep Rupture of Fibre Bundles, Eng. Fract. Mech., 28 (1987), 681–688.CrossRefGoogle Scholar
  37. 37.
    Chrzanowski, M., Kolczuga, M.: Continuous Damage Mechanics Applied to Fatigue, Mech. Res. Comm., 7 (1980), 41–46.zbMATHGoogle Scholar
  38. 38.
    Chrzanowski, M.: The Use of the Damage Concept in Describing Creep-Fatigue Interaction Under Prescribed Stress, Int.J.Mech.Sc., 18 (1976), 69–73.CrossRefGoogle Scholar
  39. 39.
    Chrzanowski, M.: A Strain Energy Governed Damage Law For High Temperature Low Cycle Fatigue, Eng. Trans., 39 (1991), 389–418.Google Scholar
  40. 40.
    Krempl, E., McMahon, J.J.,Yao, D.: Viscoplasticity Based on Overstress with a Different Growth Law for the Equilibrium Stress, Mech. Mat., 5 (1986), 35–48.Google Scholar

Copyright information

© Springer-Verlag Wien 1994

Authors and Affiliations

  • M. Chrzanowski
    • 1
  1. 1.Cracow University of TechnologyCrakowPoland

Personalised recommendations